innodisk

M.2 (S80) 3MG2-P Series AES Function

Customer:	Customer:
Customer	Customer
Part	Part
Number:	Number:
Innodisk	Innodisk
Part	Part
Number:	Number:
Innodisk	Innodisk
Model Name:	Model Name:
Date:	Date:

Customer
Approver

Total Solution For Industrial Flash Storage

innodisk

Table of contents

LIST OF FIGURES	6
1. PRODUCT OVERVIEW	7
1.1 INTRODUCTION OF INNODISK M.2 (S80) 3MG2-P WITH AES FUNCTION	7
1.2 PRODUCT VIEW AND MODELS	7
1.3 SATA INTERFACE	8
2. PRODUCT SPECIFICATIONS	9
2.1 CAPACITY AND DEVICE PARAMETERS	9
2.2 PERFORMANCE	9
2.3 ELECTRICAL SPECIFICATIONS	9
2.3.1 Power Requirement	9
2.3.2 Power Consumption	10
2.4 Environmental Specifications	10
2.4.1 Temperature Ranges	10
2.4.2 Humidity	10
2.4.3 Shock and Vibration	10
2.4.4 Mean Time between Failures (MTBF)	10
2.5 CE AND FCC COMPATIBILITY	11
2.6 RoHS Compliance	11
2.7 RELIABILITY	11
2.8 TRANSFER MODE	11
2.9 PIN ASSIGNMENT	11
2.10 MECHANICAL DIMENSIONS	14
2.11 ASSEMBLY WEIGHT	15
2.12 Seek Тіме	15
2.13 Hot Plug	15
2.14 NAND FLASH MEMORY	15
3. THEORY OF OPERATION	16
3.1 OVERVIEW	16
3.2 SATA III CONTROLLER	16
3.3 Error Detection and Correction	16
3.4 WEAR-LEVELING	17
3.5 BAD BLOCKS MANAGEMENT	17
3.6 IDATA GUARD	17
3.7 GARBAGE COLLECTION/TRIM	17
3.8 QERASER FUNCTION (OPTIONAL)	17
3.9 M.2 (S80) 3MG2-P AES FUNCTION FLOW CHART	19
3.9.1 Encrypted Key Management	

4. INSTALLATION REQUIREMENTS	21
4.1 M.2 (S80) 3MG2-P PIN DIRECTIONS	21
4.2 ELECTRICAL CONNECTIONS FOR M.2 (S80) 3MG2-P	21
4.3 DEVICE DRIVE	21
5. SMART FEATURE SET	22
6. AES ALGORITHM CERTIFICATION	24
6.1 AES ALGORITHM	24
6.2 DRBG ALGORITHM	24
6.3 SHS ALGORITHM	24
7. PART NUMBER RULE	25
7. APPENDIX	26

REVISION HISTORY

Revision	Description	Date
Rev 1.0	First Released October, 2015	
Rev 1.1	Modify LBA	January, 2017
	Update performance, power consumption	
	Add SMART Attribute	
Rev 1.2	Modify LBA/TBW/pin assignment	April, 2017
	Update CE/FCC/RoHS/REACH certification	
Rev 1.3	Modify user Capacity of 512GB	Sep., 2017
	Update performance/ power consumption	
	Update CE/FCC/RoHS/REACH certification	
Rev 1.4	Update performance/power consumption	Jan., 2018
	Update mechanical drawing	
Rev 1.5	Add caution notice and update REACH, RoHS	Aug. 2019

List of Tables

TABLE 1: DEVICE PARAMETERS	9
TABLE 2: TOSHIBA 15NM PERFORMANCE	9
TABLE 3: INNODISK M.2 (S80) 3MG2-P POWER REQUIREMENT	9
TABLE 4: POWER CONSUMPTION	10
TABLE 5: TEMPERATURE RANGE FOR M.2 (S80) 3MG2-P	10
TABLE 6: SHOCK/VIBRATION TESTING FOR M.2 (S80) 3MG2-P	10
TABLE 7: M.2 (S80) 3MG2-P MTBF	11
TABLE 8: INNODISK M.2 (S80) 3MG2-P PIN ASSIGNMENT	12

List of Figures

FIGURE 1: INNODISK M.2 (S80) 3MG2-P (TYPE 2280)	7
FIGURE 2: INNODISK M.2 (S80) 3MG2-P BLOCK DIAGRAM	16
FIGURE 3: INNODISK M.2 (S80) 3MG2-P AES FLOW CHART	
FIGURE 4: INNODISK M.2 (S80) 3MG2-P AES FLOW CHART	19
FIGURE 5: SIGNAL SEGMENT AND POWER SEGMENT	21

1. Product Overview

1.1 Introduction of Innodisk M.2 (S80) 3MG2-P with AES function

Innodisk M.2 (S80) 3MG2-P is designed as the standard M.2 form factor with SATA interface, and supports SATA III standard (6.0Gb/s) with excellent performance. The form factor refers to the M.2(NGFF) specification which established by JEDEC. Regarding of mechanical interference, Innodisk M.2 (S80) 3MG2-P absolutely replaces the traditional hard disk and makes personal computer, in any field, smaller and easier. Innodisk M.2 (S80) 3MG2-P is designed with AES engine, which is a built-in controller. When controller receives the data package from host, AES engine encrypts the data package and saves the encrypted data into NAND flash. Thus, unauthorized personal has no access to decrypt the data in NAND flash.

Innodisk M.2 (S80) 3MG2-P effectively reduces the booting time of operation system and the power consumption is less than hard disk drive (HDD), and complies with ATA protocol, no additional drives are required, and can be configured as a boot device or data storage device.

CAUTION TRIM must be enabled.

TRIM enables SSD's controller to skip invalid data instead of moving. It can free up significant amount of resources, extends the lifespan of SSD by reducing erase, and write cycles on the SSD. Innodisk's handling of garbage collection along with TRIM command improves write performance on SSDs.

1.2 Product View and Models

Innodisk M.2 (S80) 3MG2-P is available in follow capacities within MLC flash ICs. 3MG2-P is followed M.2 2280-D2-B-M standard.

M.2 (S80) 3MG2-P 32GB M.2 (S80) 3MG2-P 64GB M.2 (S80) 3MG2-P 128GB M.2 (S80) 3MG2-P 256GB M.2 (S80) 3MG2-P 512GB M.2 (S80) 3MG2-P 1TB

Figure 1: Innodisk M.2 (S80) 3MG2-P (type 2280)

1.3 SATA Interface

Innodisk M.2 (S80) 3MG2-P supports SATA III interface, and compliant with SATA I and SATA II. SATA III interface can work with Serial Attached SCSI (SAS) host system, which is used in server computer. Innodisk M.2 (S80) 3MG2-P is compliant with Serial ATA Gen 1, Gen 2 and Gen 3 specification (Gen 3 supports 1.5Gbps /3.0Gbps/6.0Gbps data rate).

2. Product Specifications

2.1 Capacity and Device Parameters

M.2 (S80) 3MG2-P device parameters are shown in Table 1.

Capacity	Cylinders	Heads	Sectors	LBA	user space
32GB	16383	16	63	61300736	29,932
64GB	16383	16	63	123166720	60,140
128GB	16383	16	63	246898688	120,566
256GB	16383	16	63	494362624	241,388
512GB	16383	16	63	989290496	483,052
1TB	16383	16	63	1979146240	966,380

Table 1: Device parameters

2.2 Performance

Burst Transfer Rate: 6.0Gbps

Table 2: Toshiba 15nm Performance

Capacity	32GB	64GB	128GB	256GB	512GB	1TB
Sequential Read	290 MB/a					
(QD32)*	280 MD/S	200 MD/S	200 MD/S	200 MD/S	200 MD/S	SOUMB/S
Sequential Write		00 MD /-	170 MD/a			
(QD32)*	45 MB/S	90 MB/S	170 MB/S	350 MB/S	320 MB/S	350MB/S
4KB Random					74 000 1005	
Read (QD32)*	27,000 10P5	50,000 10P5	55,200 1085	55,500 1085	74,000 10P5	75,000 1085
4KB Random	11 000 1000					
Write (QD32)*	11,000 10PS	23,000 10PS	45,000 1025	51,000 10PS	69,000 IOPS	73,000 10PS

Note: * Performance is based on CrystalDiskMark 5.1.2 with file size 1000MB of Queue Depth 32

2.3 Electrical Specifications

2.3.1 Power Requirement

Table 3: Innodisk M.2 (S80) 3MG2-P Power Requirement

Item	Symbol	Rating	Unit
Input voltage	VIN	+3.3 DC +- 5%	V

2.3.2 Power Consumption

Mode	Power Consumption (mA)	
Startup	970 (max.)	
Read	470 (max.)	
Write	840 (max.)	
Idle	110 (max.)	

Table 4: Power Consumption

* Target: 512GB M.2 (S80) 3MG2-P

2.4 Environmental Specifications

2.4.1 Temperature Ranges

Table 5: Temperature range for M.2 (S80) 3MG2-P

Temperature	Range
Operating	Standard Grade: 0°C to +70°C
Operating	Industrial Grade:-40°C to +85°C
Storage	-55°C to +95°C

2.4.2 Humidity

Relative Humidity: 10-95%, non-condensing

2.4.3 Shock and Vibration

Table 0: SHUCK/ VIDIALIUN TESLING IUT M.2 (SOU) SMG2-P	Table 6:	Shock	/Vibration	Testing	for M.2	(\$80)	3MG2-P
--	----------	-------	------------	---------	---------	--------	--------

Reliability	Test Conditions	Reference Standards		
Vibration	7 Hz to 2K Hz, 20G, 3 axes	IEC 68-2-6		
Mechanical Shock	Duration: 0.5ms, 1500 G, 3 axes	IEC 68-2-27		

2.4.4 Mean Time between Failures (MTBF)

Table 7 summarizes the MTBF prediction results for various M.2 (S80) 3MG2-P configurations. The analysis was performed using a RAM Commander[™] failure rate prediction.

- **Failure Rate**: The total number of failures within an item population, divided by the total number of life units expended by that population, during a particular measurement interval under stated condition.
- **Mean Time between Failures (MTBF)**: A basic measure of reliability for repairable items: The mean number of life units during which all parts of the item perform within their specified limits, during a particular measurement interval under stated conditions.

Product	Condition	MTBF (Hours)	
Innodisk M.2 (S80) 3MG2-P	Telcordia SR-332 GB, 25°C	>3,000,000	

2.5 CE and FCC Compatibility

M.2 (S80) 3MG2-P conforms to CE and FCC requirements.

2.6 RoHS Compliance

M.2 (S80) 3MG2-P is fully compliant with RoHS directive.

2.7 Reliability

Parameter		Value				
Read Cycles		Unlimited Read Cycles				
Flash endurance		3,000 P/E cycles				
Wear-Leveling A	lgorithm	Support				
Bad Blocks Mana	agement	Support				
Error Correct Co	de	Support				
(Total Bytes W	/ritten) Unit:TB					
Capacity	Sequential workload	Client workload				
32GB	85.2	37.5				
64GB	170.5	75				
128GB	340.9	150				
256GB	681.8	300				
512GB	1364	600				
1TB	2663	1172				
* Note:						
1. Sequential: Mainly sequential write, tested by Vdbench.						
2. Client: Follow JESD218 Test method and JESD219A Workload, tested by ULINK.						
(The capacity lower than 64GB client workload is not specified in JEDEC219A,						
the values are estimated.)						
3. Based on ou	ut-of-box performance.					

2.8 Transfer Mode

M.2 (S80) 3MG2-P support following transfer mode:

Serial ATA III 6.0Gbps

Serial ATA II 3.0Gbps

Serial ATA I 1.5Gbps

2.9 Pin Assignment

Innodisk M.2 (S80) 3MG2-P uses a standard SATA pin-out. See Table 8 for M.2 (S80) 3MG2-P pin assignment.

Signal Name	Pin #	Pin # Pin # Signal Name	
		75	GND
3.3V	74	73	GND
3.3V	72	71	GND
3.3V	70	69	GND
NC	68	67	NC
Notch	66	65	Notch
Notch	64	63	Notch
Notch	62	61	Notch
Notch	60	59	Notch
NC	58		
NC	56	57	GND
NC	54	55	NC
NC	52	53	NC
NC	50	51	GND
NC	48	49	RX+
NC	46	47	RX-
NC	44	45	GND
NC	42	43	TX-
NC	40	41	TX+
DEVSLP	38	39	GND
NC	36	37	NC
NC	34	35	NC
NC	32	33	GND
NC	30	31	NC
NC	28	29	NC
NC	26	27	GND
NC	24	25	NC
NC	22	23	NC
NC	20	21	GND
Notch	18	19	Notch
Notch	16	17	Notch
Notch	14	15	Notch
Notch	12	13	Notch
DAS/DSS	10	11	NC
NC	8	9	NC
NC	6	7	NC
3.3V	4	5	NC

Table 8: Innodisk M.2 (S80) 3MG2-P Pin Assignment

in	no	d	5	k

M.2 (S80) 3MG2-P with AES

3.3V	2	3	GND
		1	GND

2.10 Mechanical Dimensions

Figure 2: DGM28-01TD82B**QC(1TB), 132ball BGA

Figure 3: DGM28-***D82*****(32GB~512GB), 152ball BG

2.11 Assembly Weight

An Innodisk M.2 (S80) 3MG2-P within flash ICs, 512GB's weight is 12 grams approximately.

2.12 Seek Time

Innodisk M.2 (S80) 3MG2-P is not a magnetic rotating design. There is no seek or rotational latency required.

2.13 Hot Plug

The SSD support hot plug function and can be removed or plugged-in during operation. User has to avoid hot plugging the SSD which is configured as boot device and installed operation system.

Surprise hot plug : The insertion of a SATA device into a backplane (combine signal and power) that has power present. The device powers up and initiates an OOB sequence.

Surprise hot removal: The removal of a SATA device from a powered backplane, without first being placed in a quiescent state.

2.14 NAND Flash Memory

Innodisk M.2 (S80) 3MG2-P uses Multi Level Cell (MLC) NAND flash memory, which is non-volatility, high reliability and high speed memory storage.

3. Theory of Operation

3.1 Overview

Figure 2 shows the operation of Innodisk M.2 (S80) 3MG2-P from the system level, including the major hardware blocks.

Figure 4: Innodisk M.2 (S80) 3MG2-P Block Diagram

Innodisk M.2 (S80) 3MG2-P integrates a SATA III controller and NAND flash memories. Communication with the host occurs through the host interface, using the standard ATA protocol. Communication with the flash device(s) occurs through the flash interface. The AES engine was built-in the ID201 controller. When M.2 (S80) 3MG2-P is initiated with Firmware, AES engine will generate a random number to be an AES key. Each SSD has a unique AES key when it leaves the factory.

3.2 SATA III Controller

Innodisk M.2 (S80) 3MG2-P is designed with ID201 built-in 256bits AES engine, a SATA III 6.0Gbps (Gen. 3) controller, which supports external DDDR3 DRAM. The Serial ATA physical, link and transport layers are compliant with Serial ATA Gen 1, Gen 2 and Gen 3 specification (Gen 3 supports 1.5Gbps/3.0Gbps/6.0Gbps data rate). The controller has 4 channels for flash interface.

3.3 Error Detection and Correction

Highly sophisticated Error Correction Code algorithms are implemented. The ECC unit consists of the Parity Unit (parity-byte generation) and the Syndrome Unit (syndrome-byte computation).

This unit implements an algorithm that can correct 40 bits per 1024 bytes in an ECC block. Code-byte generation during write operations, as well as error detection during read operation, is implemented on the fly without any speed penalties.

3.4 Wear-Leveling

Flash memory can be erased within a limited number of times. This number is called the **erase cycle limit** or **write endurance limit** and is defined by the flash array vendor. The erase cycle limit applies to each individual erase block in the flash device.

Innodisk M.2 (S80) 3MG2-P uses a static wear-leveling algorithm to ensure that consecutive writes of a specific sector are not written physically to the same page/block in the flash. This spreads flash media usage evenly across all pages, thereby extending flash lifetime.

3.5 Bad Blocks Management

Bad Blocks are blocks that contain one or more invalid bits whose reliability are not guaranteed. The Bad Blocks may be presented while the SSD is shipped, or may develop during the life time of the SSD. When the Bad Blocks is detected, it will be flagged, and not be used anymore. The SSD implement Bad Blocks management, Bad Blocks replacement, Error Correct Code to avoid data error occurred. The functions will be enabled automatically to transfer data from Bad Blocks to spare blocks, and correct error bit.

3.6 iData Guard

Innodisk's iData Guard is a comprehensive data protection mechanism that functions before and after a sudden power outage to M.2. Low-power detection terminates data writing before an abnormal power-off, while table-remapping after power-on deletes corrupt data and maintains data integrity. Innodisk's iData Guard provides effective power cycling management, preventing data stored in flash from degrading with use.

3.7 Garbage Collection/TRIM

Garbage collection and TRIM technology is used to maintain data consistency and perform continual data cleansing on SSDs. It runs as a background process, freeing up valuable controller resources while sorting good data into available blocks, and deleting bad blocks. It also significantly reduces write operations to the drive, thereby increasing the SSD's speed and lifespan.

3.8 QEraser Function (Optional)

QEraser function is designed for emergency data erase in few seconds by providing ATA command or trigger by HW switch.

3.8.1 HW QErase diagram (Optional)

HW quick erased feature can be customized in capacity of 32GB-512GB, but not available for 1TB capacity.

Figure 5: Innodisk M.2 (S80) 3MG2-P (32GB-512GB) QErase diagram

3.8.2 QEraser Command FAh-66h

Use to erase data blocks. When the command is issued, the flash is erased immediately. This command causes the SSD to erase all user data blocks, including any reallocated blocks, while retaining all other system data and bad block information.

- Protocol: No Data

-Inputs

Table 9: Execute Quick Erase command for inputs information

Register	7	6	5	4	3	2	1	0
Features	66h							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs na obs DEV Na							
Status				FA	h			

-Normal Outputs

Table 10: Quick Erase command for normal output information

innodisk						M.2 (S8	30) 3MG	62-P with
Register	7	7 6 5 4 3					1	0
Error					Na			
Sector Count					Na			
LBA Low	Na							
LBA Mid					Na			
LBA High					Na			
Device	Na	Na	Na	DEV	Na	Na	Na	Na
Status	BSY	DRDY	Na	DSC	Na	Na	Na	ERR

Device register-

DEV shall specify the selected device.

Status register

BSY will be cleared to zero indicating command completion

DRDY will be set to one.

DF (Device Fault) will be cleared to zero.

DRQ will be cleared to zero

ERR will be cleared to zero.

3.9 M.2 (S80) 3MG2-P AES function flow chart

In order to complete the physical security layer of protection, encryption needs to be paired with an ATA user password by ATA security command. After setting the authorized key by ATA security command, every time when you power on the system with SSD encrypted, you will be requested for a password to access the SSD. If the password is correct, the SSD will run well; if not, then you will not be able to access the SSD then.

Figure 6: Innodisk M.2 (S80) 3MG2-P AES flow chart

3.9.1 Encrypted Key Management

Innodisk 3MG2-P SSD includes two methods of key management to apply to different applications.

AES

innodisk

The first is a standard approach that allows the firmware to generate a random number and a unique key when it leaves the factory. This method ensures that the user can easily apply the SSD with the data encrypted key. Another approach is to meet unique customer requirements with an encrypted key generated by an SSD from the SATA interface host. The SSD must keep the encrypted key value when receiving the reset commands. This method works best for the SSD as a removable device in different systems. Innodisk provides the test tool to execute the AES hardware encryption. This user-friendly tool, developed by Innodisk Corporation, allows the customer to use/test encryption functions.

3.9.2 Authorized Key Management

In order to complete the physical security layer of protection, encryption needs to be bundled with an ATA user password provided by an ATA Security command. Unlike the AES key, the authorized key must be set by the user via the BIOS configuration. Every time you power on the system with SSD encryption, a password request prompt is sent to access the SSD. If the password is correct, the SSD will run well; if not, you will not be able to access the SSD.

Command	Command Code
SECURITY SET PASSWORD	0XF1
SECURITY UNLOCK	0XF2
SECURITY ERASE PREPARE	0XF3
SECURITY ERASE UNIT	0XF4
SECURITY FREEZE LOCK	0XF5
SECURITY DISABLE PASSWORD	0XF6

3.9.3 TCG OPAL

OPAL is a set of specifications for features of data storage devices that enhance security. These specifications are published by the Trusted Computing Group's Storage Work Group. Innodisk 3MG2-P is compliant with TCG OPAL 2.0^(*1). The capability of TCG OPAL Security mode allows multiple users with independent access control to read/write/erase independent data areas (LBA ranges). Each locking range adjusts by authenticated authority. Note that by default there is a single "Global Range" that encompasses the whole user data area. In TCG Opal Security Mode, Revert, Revert SP and GenKey command can erase all of data including global range and locking range; in the meantime generate the new encrypted key.

*1. You need to install TCG OPAL software to implement OPAL function, which is supplied by TCG OPAL software developed company

4. Installation Requirements

4.1 M.2 (S80) 3MG2-P Pin Directions

Figure 7: Signal Segment and Power Segment

4.2 Electrical Connections for M.2 (S80) 3MG2-P

A Serial ATA device may be either directly connected to a host or connected to a host through a cable. For connection via cable, the cable should be no longer than 1meter. The SATA interface has a separate connector for the power supply. Please refer to the pin description for further details.

4.3 Device Drive

No additional device drives are required. The Innodisk M.2 (S80) 3MG2-P can be configured as a boot device.

5. SMART Feature Set

Innodisk 3MG2-P series support the SMART command set and defines some vendor-specific data to report SMART attributes of SSD.

Value	Command
D0h	Read Data
D1h	Read Attribute Threshold
D2h	Enable/Disable Autosave
D3h	Save Attribute Values
D4h	Execute OFF-LINE Immediate
D5h	Read Log
D6h	Return Status
D8h	Enable SMART Operations
D9h	Disable SMART Operations
DAh	Return Status

5.1 SMART Attributes

Innodisk 3MG2-P series SMART data attributes are listed in following table.

Attribute ID (hex)	Raw Attribute Value						Attribute Name				
1 (01h)	MSB	00	00	00	00	00	00	Raw Read Error Rate			
5 (05h)	LSB	MSB	00	00	00	00	00	Reallocated Sector Count			
9 (09h)	LSB			MSB	00	00	00	Power-on Hours			
12 (0Ch)	LSB			MSB	00	00	00	Power Cycle Count			
160 (A0h)	LSB			MSB	00	00	00	Uncorrectable sector count when read/write			
161 (A1h)	LSB	MSB	00	00	00	00	00	Number of valid spare block			
163 (A3h)	LSB	MSB	00	00	00	00	00	Number of initial invalid block			
164 (A4h)	LSB	MSB	00	00	00	00	00	Total erase count			
165 (A5h)	LSB			MSB	00	00	00	Maxumum erase count			
166 (A6h)	LSB			MSB	00	00	00	Minimum erase count			
167 (A7h)	LSB			MSB	00	00	00	Average erase count			
168 (A8h)	LSB			MSB	00	00	00	Max erase count of spec			
169 (A9h)	LSB			MSB	00	00	00	Reman Life (percentage)			
175 (AFh)	LSB			MSB	00	00	00	Program fail count in worst die			
176 (B0h)	LSB			MSB	00	00	00	Erase fail count in worst die			
177 (B1h)	LSB			MSB	00	00	00	Total wear level count			

inn	odisk	ſ						M.2 (S80) 3MG2-P with AFS
178 (B2h)	LSB	MSB	00	00	00	00	00	Runtime invalid block count
181 (B5h)	LSB			MSB	00	00	00	Total program fail count
182 (B6h)	LSB	MSB	00	00	00	00	00	Total erase fail count
187 (BBh)	LSB			MSB	00	00	00	Uncorrectable error count
192 (C0h)	LSB	MSB	00	00	00	00	00	Power-Off Retract Count
194 (C2h)	MSB	00	00	00	00	00	00	Controlled temperature
195 (C3h)	LSB			MSB	00	00	00	Hardware ECC recovered
196 (C4h)	LSB			MSB	00	00	00	Reallocation event count
198 (C6h)	LSB			MSB	00	00	00	Uncorrectable error count off-line
199 (C7h)	LSB	MSB	00	00	00	00	00	UltraDMA CRC error count
225 (E1h)	LSB						MSB	Total LBAs written (each write unit = 32MB)
232 (E8h)	LSB	MSB	00	00	00	00	00	Available reserved space
241 (F1h)	LSB						MSB	Total LBAs written (each write unit = 32MB)
242 (F2h)	LSB						MSB	Total LBAs read (each write unit = 32MB)

6. AES Algorithm Certification

The following provides technical information about controller implementations that have been validated as confirming to the Advanced Encryption Standard (AES) Algorithm, Deterministic Random Bit Generator (DRBG) Algorithm, and Secure Hash Standard (SHS).

6.1 AES	6 Algorithm		
Val. No	Operational	Val. Date	Modes/States/Key sizes/Description/Notes
	Environment		
2474	Cadence	May/24/2013	Using the tests found in The Advanced Encryption
	NC-verilog		Standard Algorithm Validation Suite (AESAVS).
	hardware		This testing is performed by NVLAP accredited
	simulator v10.20		Cryptographic And Security Testing (CST)
			Laboratories.
			ECB (e/d; 128, 192, 256)
			XTS (KS: XTS_128)
			KS: XTS_256

6.2 DRBG Algorithm

Val. No	Operational	Val. Date	Modes/States/Key sizes/Description/Notes
	Environment		
337	Cadence	May/24/2013	Using the tests found in The DRBG Validation
	NC-verilog		Suite (DRBGVS). This testing is performed by
	hardware		NVLAP accredited Cryptographic And Security
	simulator v10.20		Testing (CST) Laboratories.
			HashBased DRBG:
			Prediction Resistance Tested: enabled and not
			enabled (SHA-256)

6.3 SHS Algorithm

Val. No	Operational	Val. Date	Modes/States/Key sizes/Description/Notes
	Environment		
2093	Cadence	May/24/2013	Has been validated as confirming to the Secure
	NC-verilog		Hash Algorithm specified in Federal Information
	hardware		Processing Standard (FIPS) 180-3, Secure Hash
	simulator v10.20		Standard (SHS), using tests described in the
			Secure Hash Algorithm Validation System
			(SHAVS). This testing is performed by NVLAP
			accredited Cryptographic And Security Testing
			(CST) Laboratories.
			SHA-256

7. Part Number Rule

	1	2	2	1	5	6	7	R	٥	10	11	12	13	14	15	16	17	18	10	20	21
CODE	1	2	5	4	5	0	/	0	9	10	11	12	13	14	13	10	17	10	19	20	21
	D	G	Μ	2	8	-	В	5	6	D	8	2	В	С	В	Q	С	-	X	X	X
									Def	init	ion										
Code 1 st (Disk)										Code 14 th (Operation Temperature)											
D: Disk									C	Sta	ndar	d Gr	ade	(0 °C	~ +7	70℃))				
Code 2 nd (Disk)								W	: Inc	lustr	ial G	irade	. (-4	0°C ~	+85	5℃)					
G: Ever	ireer	ı ser	ies																		
	Cod	de 3	rd ~!	5 th (Forn	n fa	ctor)			Code 15 th (Internal control)										
M28: M.2	2-SA	TA T	ype 2	2280)-D2·	-B-M				A٢	A~Z: PCB version.										
	C	ode	7 th (~9 th	(Ca	paci	ty)				Code 16 th (Channel of data transfer)										
32G: 320	GΒ			В	856:	2560	GΒ			D	D: Dual Channels										
64G: 640	GΒ			C	212:	5120	GΒ			Q	Q: Quad Channels										
A28: 128	3GB			0)1T:	1TB															
Code 10 th ~12 th (Controller)									Code 17 th (Flash Type)												
D82: M.2 (S80) 3MG2-P with AES engine								C	Tos	hiba	MLC	2									
Code 13 th (Flash mode)									Code 19 th ~21 st (Customize code)												
B: Toshiba 15nm Synchronous Flash.																					

7. Appendix

REACH

宜鼎國際股份有限公司 Innodisk Corporation REACH Declaration

Tel:(02)7703-3000 Fax:(02) 7703-3555 Internet: http://www.innodisk.com/

We hereby confirm that the product(s) delivered to

Innodisk P/N	Description
All Innodisk EM FLASH Products	

- contain(s) no hazardous substances or constituents exceeding the defined threshold 0.1 % by weight in homogenous material if not otherwise specified, as described in the candidate list table currently including 201 substances and shown on the ECHA website (<u>http://echa.europa.eu/de/candidate-list-table</u>).
- contain(s) one or more hazardous substances or constituents exceeding 0.1 % by weight in homogenous material if not otherwise specified in candidate list table. Where the threshold value is exceeded, the substances in question are to be declared in accompanying <u>Appendix A</u>.
- Comply with REACH Annex XVII.

Guarantor

Company name 公司名稱: Innodisk Corporation 宣鼎國際股份有限公司

Company Representative 公司代表人:____ Raudy Chien 簡川勝___

Company Representative Title 公司代表人職稱: Chairman 董事長

RoHS

宜鼎國際股份有限公司 Innodisk Corporation

Page 1/1

Tel:(02)7703-3000 Fax:(02) 7703-3555 Internet: http://www.innodisk.com/

ROHS 自我宣告書(RoHS Declaration of Conformity)

Manufacturer Product: All Innodisk EP products

一、 宜鼎圖際股份有限公司(以下稱本公司)特此保證售予責公司之所有產品,皆符合歐盟 2011/65/EU及(EU) 2015/863 關於 RoHS 之規範要求。

Innodisk Corporation declares that all products sold to the company, are complied with European Union RoHS Directive (2011/65/EU) and (EU) 2015/863 requirement.

二、 本公司同意因本保證書或與本保證書相關事宜有所爭議時,雙方宜友好協商,達成協議。

Innodisk Corporation agrees that both parties shall settle any dispute arising from or in connection with this Declaration of Conformity by friendly negotiations.

Name of hazardous substance	Limited of RoHS ppm (mg/kg)
鉛 (Pb)	< 1000 ppm
汞 (Hg)	< 1000 ppm
鎘 (Cd)	< 100 ppm
六價鉻(Cr 6+)	< 1000 ppm
多溴聯苯 (PBBs)	< 1000 ppm
多溴二苯醚 (PBDEs)	< 1000 ppm
鄰苯二甲酸二(2-乙基己基)酯(DEHP)	< 1000 ppm
鄭苯二甲酸丁酯苯甲酯 (BBP)	< 1000 ppm
鄭苯二甲酸二丁酯 (DBP)	< 1000 ppm
鄰苯二甲酸二異丁酯 (DIBP)	< 1000 ppm

立保 證 🖀 人 (Guarantor)

Company name 公司名稱:<u>Innodisk Corporation 宜素國際股份有限公司</u>

Company Representative 公司代表人:<u>Randy Chien 簡川勝</u>

Company Representative Title 公司代表人職稱: Chairman 董事長

Date 时期: 2018 / 07 / 01

CE

