Product Data Sheets

Customer:

Part No. :

CoolerMaster Model No.: PC-07680-01-GP2
N.W: $\underline{234.6 \mathrm{~g}}$ Edition: A2

Issued Date: 2022/09/09

Cooler Master Co., Ltd.

Cooler Master Co．，Ltd．

CONTENTS

1．Component list －3
2．Whole photo －4
3．2D drawing －5～13
3．1 Cooler asm －5～6
3．2 HS －7
3．3 CPU SCREW －8
3．4 SPRING －9
3．5 O－RING 10
3．6 FAN SCREW 11
3．7 GREASE 12
3．8 CM－LABEL 13
4．Material of certificate 14～19
4．1 HS（AL6063） 14
4．2 SCREW（AISI1018） 15
4．3 SPRING（SWP） 16
4．4 O－RING（AISI1018） -17
4．5 Grease（7762） 18～19
4．6 CM－LABEL（25\＃xiaoyinlong） 20
5．Metal／Plastic part reliability test record table 21
6．PACKAGE 22
7．性能測試報告 23
8．壓力測試報告 24
9．FAN－SPEC－ 25～46
10．FAN terminal 47～48
11．FAN wire 49～51
12．．FAN life test 52～54

1．COMPONENT LIST

NO．	PART NAME	Material	Description	QTY
1	HS	AL6063	鋁擠洗白	1／1
2	Screw	AISI1018	鍍䤼	4／1
3	spring	SWP	抗氧化	4／1
4	O－RIGN	SUS304H	脫脂	4／1
5	Fan－Screw	AISI1018	鍍黑鉬	4／1
6	Grease	7762	$\varnothing 32^{*} 0.2 \mathrm{~mm}$	0.25 g
7	FAN	－－－－－－	Ø $95 *$ H25．4mm	1／1
8	CM－LABEL	XIAOYINLONG	Ø29＊H0．2mm	1／1
9				
10				
11				
12				
13				
14				
15				
16				
17				

2.Whole Photo

3.2 HS

3.3 CPU SCREW

3.4 SPRING

3.5 O-RING

3.6 FAN SCREW

3.7 GREASE

3. 8 CM -LABEL

4 Material of certificate

4．1 HS（AL6063T5）

祭 东中亚钴业体限公司

6063－T5 合金材质报告

支件编号：QR／ZY－ZJ－01
所品的立要合金成分按国标 GB／T3190－2017
的要求执行。

合金成分衣：						GB／T3190－2017						
合今												
	81	12	in	\％	（1）	48	解	is	结 27	基它		侣A
	St				Mg	Ct		T		ヶ介	合泣	
6063	0379	0154	0,0093	0029	062	00050	00025	00020	＊	0.05	0.15	98.6

方氏便度：11HW

公司为了保护口然环境，美化口然环境。保限人们的身体康健。所存生产的产品的合金成分都符合国家（国际）标准要求，其中镉，铅，氷，沸水苁取法分价铬，多浿联东之和，

莋符合相关呩准要求

2017－7－18

4.2 SCREW(AISI1018)

Cooler Master Co., Ltd.
TEL: +886 (2) 32340050 FAX: +886 (2) 32340051

4.3 SPRING (SWP)

A. Chemical Composition(\%)		Heat $\mathrm{No:} \mathrm{SF45079}$											
		Chemical Composition(\%)											
		c	si	Mn	P	8	Ca	Cr	v	A1	02	n	Ni
Specification	$\begin{aligned} & \text { Mia } \\ & \text { Max } \end{aligned}$	$\begin{gathered} 0.80 \\ 0.85 \end{gathered}$	$\begin{aligned} & 0.12 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.60 \end{aligned}$	0.025	0.025	0.20						
Actual		0.824	0.224	0.420	0.009	0.003	0.015						

item	Diameter 손경	0.6 mm	Tensilie Strength	$\begin{array}{\|c\|} \hline \text { Torsion } \\ \text { Vatue } \end{array}$ Value	$\begin{array}{\|l\|} \hline \text { Toribies } \\ \text { State } \end{array}$				$\begin{array}{\|l\|} \hline \text { Rednction of } \\ \text { Area } \end{array}$	Decarbur Ization		Appearace			
		$\begin{aligned} & \text { Ovality } \\ & \text { 렬경ㅊ } \end{aligned}$	$\begin{gathered} \text { 잇죽갛ㄷ } \\ \text { (N(m) } \end{gathered}$	$\begin{array}{\|c} \text { 비표렴 홋수 } \\ \text { (Turas) } \\ \hline \end{array}$		$\begin{array}{\|c} \underset{\text { 감기시켤 }}{(4 \times \mathrm{D})} \end{array}$	$\begin{gathered} \text { 굴 븨씨셔 } \\ (909) \end{gathered}$	쿄힘형사비	$\begin{gathered} \text { 바면강소용 } \\ (\%) \end{gathered}$		$\begin{array}{\|c} \text { Exid } \\ (\mathrm{mm}) \end{array}$	의 ${ }^{\text {e }}$	긔도	중랑 (kar)	비교
	$\begin{aligned} & 0.590 \\ & 0.610 \end{aligned}$	${ }^{0.010}$	$\begin{aligned} & 2,450 \\ & 2,700 \end{aligned}$			Good					0.020	Good			
7	0.598	0.001	2,519			Pass				Pase	0.007	Pam		50.00	
8	0.598	0.001	2,519			Pass				Pass	0.007	Pass		50.00	
9	0.598	0.001	2,519			Pass				Pass	0.007	Pass		50.00	
10	0.598	0.002	2.526			Pass				Pam	0.007	Pass		50.00	
11	0.598	0.002	2.526			Pass				Pass	0.007	Pas		sa.00	
12	${ }^{0.598}$	0.002	2,526			Pass				Pas	0.007	Pass		50.06	

4.4 ORING(SUS304H)

Shintetsu

X-23-7762

Thermal Interface Material

Description of Use

Thermal grease (X-23-7762) is a thermal interface material developed by Shin-Etsu Chemical Co., Ltd. to meet the current and future thermal management requirements of high performance microprocessors. It is used to increase heat sink effectiveness by closing the air gap existing between the top of the processor and the fan heat sink. Air is a thermal insulator with a thermal conductivity of $0.027 \mathrm{~W} / \mathrm{mK}$. The grease is applied to the raised area on top of the processor after the processor is in the socket. The fan heat sink is centered on the processor top, with the raised areas on the bottom of the heat sink and the processor top aligned. The fan heat sink is firmly pressed to evenly distribute the thermal grease until the metal of the heat sink is felt against the metal of the processor top. The excess grease can be removed by wiping with a soft cloth.

Typical Physical Properties

Appearance	Gray
Viscosity (25C)	1700 Poise
Bulk Thermal Conductivity	More than 4 W/mK (with solvent) More than 6 W/mK (w/o solvent, as X-23-7732)
Volatile Content (150C $\times 24 \mathrm{hrs})$	2.5%

Handling instruction

1. Suggest to store the material under 10 deg C . Once open the lid, please use it up as soon as possible.
2. Require stirring the material up before using.
3. $\mathrm{X}-23-7762$ contains $2 \mathrm{wt} \%$ of solvent as a diluted component for application of screen-printing. Therefore, require removing solvent after putting 7762 on substrate. Recommendable curing condition: $60 \mathrm{deg} \mathrm{C} \times 30 \mathrm{~min}$

Cooler Master Co., Ltd.
TEL: +886 (2) 32340050 FAX: +886 (2) 32340051

QA , TAKEFU

Date :0ct.13,2006
No. SI-MC-1034

To : SHIN-ETSU SILICONE TAIWAN CO., LTD.

Information on ingredients of $\mathrm{X}-23-7762$

Shin-Etsu product $X-23-7762$ is a mixture consisting of following ingredients.

Formulation of $X-23-7762$:

Ingredients	Contents
Silicone 0il	
Additive (Minor constituents)	
Metal Oxide Powder	ca. 20%
Metal Powder	ca. 70%

Your kind consideration and arrangements will be greatly appreciated.

Cooler Master Co．，Ltd．
www．coolermaster．com

4.6 25\＃消银龙（CM LABEL）

高冠胶粘制品（中山）有限公司 产品说明书
KK ENTERPRISE（ZHONGSHAN）CO．，LTD．SPECIFICATIONS
编号：A026

代号 Code	TLSMI1	品 Article名 Name	消银特多龙标签纸 METALIZED POLYESTERLABEL（I）（SILVER MATTE）

面 材 SURFACE MATERIAL 材料名称 Article Name 聚酯膜 POLYESTER FILM 伸长率 \％ Elongation			
度度 mm Thickness	0.025 ± 0.003	颜色 Color	消银色 SILVER MATTE
基重 $\mathrm{g} / \mathrm{m}^{2}$ Basic Weight	35 ± 4	平滑度 Smoothness	GOOD
抗张力 $\mathrm{kg} / 15 \mathrm{~mm}$ Tensile Strength	-	印刷性 Printability	GOOD

胶系 Adhesive Base	压克力系（\＃9） ACRYLIC
胶厚 mm Coating Thickness	0.023 ± 0.003
上胶量 $\mathrm{g}^{2} / \mathrm{m}^{2}$ Dry Coating Weight	23 ± 3
初期力 No／Boll （nitial Tack	$2 \uparrow$
粘着力 Kg／25mm 180 0° Peel Adhesion	$0.6 \uparrow$

剥离力 $\mathrm{g} / 25.4 \mathrm{~mm}$ Release Force	10 ± 5
保持力 hr／kg／20 Hold	
Holding Power	$8 \uparrow$
耐候性 Weathering Resistance	GOOD
适用温度 C Temp．Range	$-20 \sim 125$
耐溶剂 Solvent Resistance	GOOD

底 纸			
材料名称 Article Name	PE 淋膜离型纸 PE LAMI．RELEASE PAPER	L破裂强度 kg／cm² Breaking Strength	$6.5 \uparrow$
厚度 mm Thickness	0.140 ± 0.006	颜色 Color	黄色 YELLOW
基重 $\mathrm{g} / \mathrm{m}^{2}$ Basic Weight	116 ± 4	平滑度 Smoothness	GOOD
抗张力 $\mathrm{kg} / 15 \mathrm{~mm}$ Tensile Strength	$8.0 \uparrow$	斩 性 Die Cutting	GOOD

物性测试条件： $23 \pm 2^{\circ} \mathrm{C}, ~ 65 \pm 5 \% \mathrm{RH}$ 保存方式：阴凉通风避免阳光直射 保存时间：一年 REMARKS

以上诸项技术资料乃本公司采用公认可靠检验方法，经多次检验所得之平均数据。但为确保正确选择与使用本公司之产品，仍请你基于欲使用对象，先行对使用目的与条件作详尽了解与试用，或者通知本公司，以便为你提供更进一步的说明与服务。

THE TECHNICAL DATA ARE BASED ON THE RELIABLE EXPERIMENTS CARRIED BY THE COMPANY，WHICH HOWEVER ARE NOT TO GUARANTEE THOSE PROPERTIES AND CHARACTERISTICS COMPLETEL Y AS SPECIFIED THEREIN． KINDLY STUDY YOUR PURPOSE AND CONDITIONS TO USE THIS PRODUCT PREVIOUSLY IN DETAIL UPON YOUR OWN RESPONSIBILITY．

Cooler Master Co．，Ltd．

5．Metal／Plastic part reliability test record table

金屬塑膠件信賴性測試記錄表

類別	檢驗項目	標準	Test 1	Test 2	Test 3
㛈漆	百格（附著力）	ISO Class 1 ASTM Class 4B	N／A	N／A	N／A
	硬度	3H	N／A	N／A	N／A
	色差／光澤	依研俥規範	N／A	N／A	N／A
	耐酒精	濃度 95% \％酒精	N／A	N／A	N／A
	膜厚	液體涂裝： $20-100 \mu_{\mathrm{m}}$	N／A	N／A	N／A
		粉體涂裝：40－100 μ_{m}	N／A	N／A	N／A
印刷	耐酒精	濃度95\％酒精	PASS	PASS	PASS
	附著力	不旸割，不得有漆塊謡撕起之情形	PASS	PASS	PASS
塑膠	扭拉力（埋銅釘）	（ M3）－依㱗測值	N／A	N／A	N／A
	扭拉力（埋銅釘）	（M4）－依要測值	N／A	N／A	N／A
	導電值（（導電漆）	依實測值	N／A	N／A	N／A
金屬	耐酒精（電鍍）	濃度 95% 酒精	PASS	PASS	PASS
	膜厚（電鏣）	電鍍䐜厚應為 $5.0 \sim 8.0 \mu_{\mathrm{m}}$ $\left(\right.$ 平面 $5 \mu_{\mathrm{m}}$ 轉直角 $3 \mu_{\mathrm{m}}$ ）	$5.2 \mu \mathrm{~m}$	$5.8 \mu \mathrm{~m}$	$5.3 \mu \mathrm{~m}$
	衊霧（ ${ }^{\text {（電鍍）}}$		PASS	PASS	PASS
		2．鍍鋅（Zn ，五彩鋅，盘鋅等，監水噴䨬試驗 48 小時	N／A	N／A	N／A
	色差／光澤（陽極）	依樣品或限度樣目视表面差異	PASS	PASS	PASS
	推拉力（nut／standoff 鉚合）依不同規格確認 （Ex．Nut M3，Standoff M3）	（ Nut M3）－依眎測值	N／A	N／A	N／A
		（ Nut M3）－依害測值	N／A	N／A	N／A
		（Standoff M3 ）－依實測值	N／A	N／A	N／A
		（ Rivet M2．5））－依冝測值	N／A	N／A	N／A
備註	ACL：金屬參考研軗M－10－A018檢驗規範；塑膠參考研華M－10－A008検验規範。 				

		${ }_{\text {zs }}{ }^{\text {w }}$ pun	eos
Zdの－10－089L0－－כd			
		do ko mor	001－ 0 S
		ह⿵人	$1908 \sim 0$
		stury posson	
98／L	907＊66\％＊28t	vg90020v	чоұдел
98／t	8＊088＊LL	vz80080	บо！7！\％xed
81／1	89＊08\％＊LL	Yg00060	әат¢
1／1		v89014	
17.0	（［III）uo！suam！a		

Carton dimension：L48． $7 \mathrm{~cm} * W 39.0 \mathrm{~cm} * H 20.6 \mathrm{~cm}$

Cooler Master Co．，Ltd．
TEL：＋886（2） 32340050 FAX：＋886（2） 32340051

7．性能測試報告

PN	TC1	TC2	DT1	W	RPM	RTH1
SAMPLE－1\＃	48.1	27.6	20.5	65.1	4428	0.315
SAMPLE－2\＃	48.3	27.7	20.6	65.1	4410	0.317
SAMPLE－3\＃	48.3	27.7	20.6	65.1	4434	0.317
SAMPLE－4\＃	48.3	27.7	20.6	65	4422	0.317
SAMPLE－5\＃	46.9	26.2	20.7	65.1	4317	0.318

CPK重點尺寸分析報告

料	號	PC－07680－01－GP2			製造廠商		讯好		檢驗日期		2022．5．12
版	本		A1		廠商編號					寞穴號	
品 名		成品			環境條件及附註事項：		洮度	65\％	［RH］${ }^{\text {。 }}$		
項目	1	2	3	4	5	6	7	8	9		
儀器代號	IMI	IMI	IMI								
規格	78	78	5								
樣品編號	0.15	0.15	0.15								
	0.15	0.15	－0．15								
1	77.92	78.14	4.99								
2	77.99	78.01	5.04								
3	77.92	78.05	5.01								
4	78.02	77.89	5.04								
5	78.01	77.86	5.01								
6	78.03	77.87	5.05								
7	77.98	78.03	5.04								
8	77.99	77.99	4.95								
9	78.00	77.98	4.99								
10	78.10	78.05	4.98								
11	78.11	78.03	5.00								
12	78.01	78.12	5.03								
13	78.02	78.07	4.97								
14	78.10	78.05	4.96								
15	78.14	78.00	5.00								
16	78.13	78.05	5.03								
17	78.12	78.02	5.03								
18	78.02	78.04	5.03								
19	78.03	78.02	5.00								
20	77.90	77.87	4.97								
21	77.92	77.88	4.99								
22	77.95	77.98	4.95								
23	77.98	78.09	5.05								
24	78.01	78.03	4.95								
25	78.07	78.02	4.98								
26	78.07	78.00	4.98								
27	78.02	78.04	5.01								
28	78.01	78.03	4.97								
29	78.06	78.01	5.04								
30	78.00	78.00	4.96								
MAX	78.14	78.14	5.05								
MIN	77.90	77.86	4.95								
X	78.021	78.007	5． 000								
σ	0． 064	0.071	0.032								
Ca	\＃DIV／0！	\＃DIV／0！	0． 000								
Cp	0． 000	0． 000	1． 549								
Cpk	\＃DIV／0！	\＃DIV／0！	1． 549								
判定	OK	OK	OK								
備注											
APPROVED BY：范柏青		CHECKED BY：张浩					TESTED BY：罗圳龙				

Cooler Master Co., Ltd.

5. Fan SPEC

DELTA ELLECTRONICS, INC.
252, SHANG YING ROAD, KUEI SAN TEL : 886-(0)3-3591968
TAOYUAN HSIEN 333, TAIWAN, R. 0. C. FAX : 886-(0)3-3591991

Customer: COOLER MASTER

Description:	DC FAN	
Customer P/N:	200007180-GP	REV:
Delta Model N0.:	AFB0912VH-4E91	Delta Safety Model N0.:AFB0912VH
Sample Rev:	06	Issue NO:
Sample Issue Dat		Quantity:

1. SCOPE:

THIS SPECIFICATION DEFINES THE ELECTRICAL AND MECHANICAL CHARACTERISTICS OF THE DC BRUSHLESS AXIAL FLOW FAN. THE FAN MOTOR IS WITH SINGLE PHASE AND FOUR POLES.
2. CHARACTERS:

ITEM	DESCRIPTION
RATED VOLTAGE	12.0 VDC
OPERATION VOLTAGE	$7.0-12.5 \mathrm{VDC}$
INPUT CURRENT	$\begin{gathered} 0.40 \text { (MAX. 0.60) A } \\ \text { (SAFETY CURRENT 0.60A) } \end{gathered}$
INPUT POWER	4.80 (MAX. 7.20) W
SPEED	$4500 \pm 10 \%$ R.P.M.
MAX. AIR FLOW (AT ZERO STATIC PRESSURE)	$\begin{aligned} & 1.634 \text { (MIN. } 1.471 \text {) } \mathrm{M}^{3} / \mathrm{MIN} . \\ & 57.70 \text { (MIN. } 51.93 \text {) } \mathrm{CFM} \end{aligned}$
MAX. AIR PRESSURE (AT ZERO AIRFLOW)	8.60 (MIN. 6.97) $\mathrm{mmH}_{2} \mathrm{O}$ 0.338 (MIN. 0.274) inchH $_{2} 0$
ACOUSTICAL NOISE (AVG.)	47.5 (MAX, 51.5) dB-A
INSULATION TYPE	UL: CLASS A

(continued)
page: 1

Cooler Master Co., Ltd.

PART NO: 731000120-GP2	
DELTA MODEL: AFB0912VH-4E91	
INSULATION STRENGTH	10 MEG OHM MIN. AT 500 VDC (BETWEEN FRAME AND (+) TERMINAL)
DIELECTRIC STRENGTH	5 mA MAX. AT $500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ ONE MINUTE, (BETWEEN FRAME AND (+) TERMINAL)
EXTERNAL COVER	OPEN TYPE
LIFE EXPECTANCE (L10) AT LABEL VOLTAGE	70,000 HOURS CONTINUOUS OPERATION AT $40{ }^{\circ} \mathrm{C}$ WITH $15 \sim 65 \% \mathrm{RH}$.
ROTATION	CLOCKWISE VIEW FROM NAME PLATE SIDE
OVER CURRENT SHUT DOWN	THE CURRENT WILL SHUT DOWN WHEN LOCKING ROTOR
LEAD WIRE	UL 1061 -F- AWG \#26 BLACK WIRE:NEGATIVE(-) RED WIRE:POSITIVE(+) YELLOW WIRE:TACHOMETER OUTPUT (FOO) BLUE WIRE:SPEED CONTROL (PWM)

NOTES: 1. ALL READINGS ARE MEASURED AFTER STABLY WARMING UP THROUGH 10 MINUTES.
2. STANDARD AIR PROPERTY IS AIR AT (Td) $25^{\circ} \mathrm{C}$ TEMPERATURE, (RH) 65% RELATIVE HUMIDITY, AND (Pb) 760 mmHg BAROMETRIC PRESSURE.
3. THE VALUES WRITTEN IN PARENS , (), ARE LIMITED SPEC.
4. ACOUSTICAL NOISE MEASURING CONDITION:

NOISE IS MEASURED AT RATED VOLTAGE IN FREE AIR IN ANECHOIC CHAMBER WITH B \& K SOUND LEVEL METER WITH MICROPHONE AT A DISTANCE OF ONE METER FROM THE FAN INTAKE.

Cooler Master Co., Ltd.

PART N0: 200007180-GP	
DELTA MODEL: AFB0912VH-4E91	
3. MECHANICAL:	
3-1. DIMENSIONS ---------------------------------- SEE DIMENSIONS DRAWING	
3-2. FRAME --- PLASTIC UL: 94 V	
3-3. IMPELLER --- PLASTIC UL: 94 C	
3-4. BEARING SYSTEM ------------------------------------ TW0 BALL BEARINGS	
3-5. WEIGHT -- 90	
4. ENVIRONMENTAL:	
4-1. OPERATING TEMPERATURE	-10 TO +60 DEGREE C
4-2. STORAGE TEMPERATURE	-40 TO +70 DEGREE C
4-3. OPERATING HUMIDITY	-- 5 TO $90 \% \mathrm{RH}$
4-4. STORAGE HUMIDITY	$5 \mathrm{TO} 95 \% \mathrm{RH}$

5. PROTECTION:

5-1. LOCKED ROTOR PROTECTION
IMPEDANCE OF MOTOR WINDING PROTECTS MOTOR FROM FIRE IN 96 HOURS OF LOCKED ROTOR CONDITION AT THE RATED VOLTAGE.

5-2. POLARITY PROTECTION
BE CAPABLE OF WITHSTANDING IF REVERSE CONNECTION FOR POSITIVE AND NEGATIVE LEADS.
6. RE OZONE DEPLETING SUBSTANCES:

6-1. NO CONTAINING PBBs, PBB0s, CFCs, PBBEs, PBDPEs AND HCFCs.
7. PRODUCTION LOCATION

7-1. PRODUCTS WILL BE PRODUCED IN CHINA OR THAILAND.
page: 3

Cooler Master Co., Ltd.

* TEST CONDITION: INPUT VOLTAGE ------- OPERATION VOLTAGE

TEMPERATURE -------- ROOM TEMPERATURE HUMIDITY ------------- 65\%RH

Cooler Master Co., Ltd.
TEL: +886 (2) 32340050 FAX: +886 (2) 32340051

Cooler Master Co., Ltd.

PART NO:	731000120-GP2
DELTA MODEL:	AFB0912VH-4E91

10. FREQUENCY GENERATOR (FG) SIGNAL:

10-1. OUTPUT CIRCUIT - OPEN COLLECTOR MODE:

CAUTION: THE FG SIGNAL LEAD WIRE MUST BE KEPT AWAY FROM "+" LEAD WIRE \& "-" LEAD WIRE.
10-2. SPECIFICATION:
$V_{\mathrm{ce}}(\mathrm{sat})=0.5 \mathrm{~V}$ MAX.
$\mathrm{Ic}_{\mathrm{c}}=5 \mathrm{~mA}$ MAX.
$V_{F c}=5.0 \mathrm{~V}$ TYP. (Vec MAX.)
$R \geq V_{\text {Pc }} /$ Ic

10-3. FREQUENCY GENERATOR WAVEFORM:

FAN RUNNING FOR 4 POLES

N=R.P.M
$\mathrm{TS}=60 / \mathrm{N}(\mathrm{SEC})$
*VOLTAGE LEVEL AFTER BLADE LOCKED
*4 POLES
page: 6
A00

Cooler Master Co., Ltd.

PART NO:	73100120-GP2
DELTA MODEL:	AFB0912VH-4E91

11. PWM CONTROL SIGNAL:

SIGNAL VOLTAGE RANGE: 0~20 VDC

- THE PREFERRED OPERATING POINT FOR THE FAN IS 20K HZ.
- at 100% dUTY CYCLE,THE ROTOR WILL SPIN at MAXIMUM SPEED.
- AT 0\% DUTY CYCLE,THE ROTOR WILL STOP SPIN.
- WITH CONTROL SIGNAL LEAD DISCONNECTED,THE FAN WILL SPIN AT MAXIMUM SPEED.

12. SPEED VS PWM CONTROL SIGNAL:
(AT $25^{\circ} \mathrm{C}$, RATED VOLTAGE \& PWM SIGNAL AS FOLLOW)

DUTY CYCLE (\%)	SPEED R.P.M.	CURRENT (A) TYP.
100	$4500 \pm 10 \%$	0.40
75	$3600 \pm 10 \%$	0.22
50	$2500 \pm 10 \%$	0.10
25	1200 ± 250	0.04
0	0	0.01

* PWM SIGNAL PWM FREQUENCY $=20 \mathrm{KHz}$

- MIN. START DUTY CYCLE : 30\% (MAX.)

WHEN DUTY CYCLE IS SET FOR MORE THAN 30\%, THE FAN WILL BE ABLE TO START FROM A DEAD STOP.
13. PWM CONTROL LEAD WIRE INPUT IMPEDANCE:

page: 7

Application Notice

1. Delta will not guarantee the performance of the products if the application condition falls outside the parameters set forth in the specification.
2. A written request should be submitted to Delta prior to approval if deviation from this specification is required.
3. Please exercise caution when handling fans. Damage may be caused when pressure is applied to the impeller, if the fans are handled by the lead wires, or if the fan was hard-dropped to the production floor.
4. Except as pertains to some special designs, there is no guarantee that the products will be free from any such safety problems or failures as caused by the introduction of powder, droplets of water or encroachment of insect into the hub.
5. The above-mentioned conditions are representative of some unique examples and viewed as the first point of reference prior to all other information.
6. It is very important to establish the correct polarity before connecting the fan to the power source. Positive $(+)$ and Negative (-). Damage may be caused to the fans if connection is with reverse polarity, if there is no foolproof method to protect against such error specifically mentioned in this spec.
7. Delta fans without special protection are not suitable where any corrosive fluids are introduced to their environment.
8. Please ensure all fans are stored according to the storage temperature limits specified. Do not store fans in a high humidity environment. We highly recommend performance testing is conducted before shipping, if the fans have been stored over 6 months.
9. Not all fans are provided with the Lock Rotor Protection feature. If you impair the rotation of the impeller for the fans that do not have this function, the performance of those fans will lead to failure.
10. Please be cautious when mounting the fan. Incorrect mounting of fans may cause excess resonance, vibration and subsequent noise.
11. It is important to consider safety when testing the fans. A suitable fan guard should be fitted to the fan to guard against any potential for personal injury.
12. Except where specifically stated, all tests are carried out at room (ambient) temperature and relative humidity conditions of $25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$. The test value is only for fan performance itself.
13. Be certain to connect an " $4.7 \mu \mathrm{~F}$ or greater" capacitor to the fan externally when the application calls for using multiple fans in parallel, to avoid any unstable power.

TEL：＋886（2） 32340050 FAX：＋886（2） 32340051

GPWV2．E132003

Fans，Electric－Component

Page Bottom

Fans，Electric－Component

See General Information for Fans，Electric－Component

DELTA ELECTRONICS INC

252 SHANG YING RD
KUEI SHAN
TAOYUAN HSIEN， 333 TAIWAN

DC fans，Model AFB followed by 0405，followed by HA，HHA，LA or MA，followed by（Y），where（Y）may be xxxxx，where x may be A through Z ， 0 through 9 ，＂－＂or blank；Model AFB followed by 0505 ，followed by HB，LB or MB，followed by（Y），where（ Y ）may be $x x x x x$ ，where x may be A through Z ， 0 through 9 ，＂－＂or blank；Model AFB followed by 0512，followed by HB，HHB，LB or MB，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0605 ，followed by H ，L or M，followed by R00，R05，RRO or RR05，followed by（ Y ），where（ Y ）may be Xxxxx， where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0805 ，followed by H, L or M ，followed by（ Y ）；Model AFB followed by 0612 ， 0624 ，followed by EH，SH，VH，followed by (Y) ；Model AFB0612LB followed by (Y) ，where (Y) may be $x \times x \times x$ ，where x may be A through Z ， 0 through 9 ，＂or blank；Model AFB followed by 0612，0624，0812，0824， 0912 or 0924，followed by H，HB，HH，HHB，L，LB，LLB，M，MB，SHB or VHB，followed by（Y）， where（ Y ）may be $x x x x x$ ，where x may be A through $Z, 0$ through $9, "-1$ or blank；Models ASB0412MA，ASB0412LA，ASB0405MA followed by（ Y ）；Model ASB followed by 0405 ，0412，followed by HA，HHA，LA or MA，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂- ＂or blank；Model ASB followed by 0505 ，followed by HB，LB or MB，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through $9,{ }^{n}-n$ or blank；Model ASB followed by 0512，0524，followed by HB，HHB，LB or MB，followed by（Y），where（Y）may be xxxxx，where x may be A through Z， 0 through 9 ，＂－＂or blank；Model ASB followed by 0812，0824，followed by HB，HHB，LB，LLB，MB，SHB or VHB，followed by（Y），where（Y）may be xxxxx where x may be A through Z， 0 through $9, ~ "-"$ or blank；Model ASB followed by 0612 or 0624 ，followed by II，IIII，L or M，followed by（Y），where（Y）may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model ASB followed by 0812，followed by L or M，followed by（ Y ）；Model ASB followed by 0912 or 0924，followed by II，L or M，followed by（Y），where（ Y ）may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂＂or blank；Model AUB followed by 0505,0512 or 0524，followed by HB，HHB，LB or MB，followed by (Y) ，where（ Y ）may be $x \times x \times x$ ，where x may be A through $Z, 0$ through 9 ，＂－ or blank；Model AUB followed by 0612,0624 ，followed by II，IIII，L or M，followed by（Y），where（Y）may be x xxxx，where x may be A through Z ， 0 through 9 ，＂－＂or blank；Model AUB followed by 0912，0924，followed by H，HH，L，M or VH，followed by（ Y ），where（ Y ）may be $x \times x x x$ ，where x may be A through Z， 0 through $9, "$＂${ }^{\prime \prime}$ or blank；Model AUB followed by 0612 or 0624 ，followed by $L, M, 11$ or IIII，followed by (Y) ，where（Y）may be $x x x x x$ ，where x may be A through $\mathbf{Z}, 0$ through 9 ，＂＂or blank；Model AUB followed by 0812 or 0824 ，followed by HB，HHB，LB，LLB，MB，SHB or VHB，followed by（Y），where（ Y ） may be $x \times x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AUB followed by 0924，followed by L，M，II，lifi or VII，followed by（Y），where （Y）may be $x \times x x x$ ，where x may be A through $\mathbf{Z}, 0$ through 9 ，＂－＂or blank；Model BFB followed by 1212 ，followed by H, HH，L，LL，M or VH，followed by（Y）， where（Y）may be $x \times x x x$ ，where x may be A through $Z, 0$ through $9, "-$＂or blank；Model BFB followed by 1224 ，followed by II，IIII，L，LL，M or VII，followed by（Y），where（ Y ）may be $x \times x x x x$ ，where x may be A through $Z, 0$ through $9, ~ "-"$ or blank；Model BFB followed by 1248，followed by $H, H H, L, L L, M$, followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂- ＂or blank；Model BFC followed by 1012 ，followed by A，B or C followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through $9, "-$＂or blank；Model DFB followed by 0405 or 0412 ，followed by H ，L L, M ，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model DFB followed by $0612,0812,0912,0824$ or 0924 followed by H，L or M，followed by（ Y ），where（ Y ）may be $x \times x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model DFB followed by $0612,0812,0824,0912$ or 0924，followed by HH，followed by (Y) ，where (Y) may be xxxxx，where \times may be A through Z ， 0 through 9 ，＂- ＂or blank；Model DFB followed by 0424 ，followed by $H, L, L L, M$ ，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model DFB followed by 0612,0624 ，followed by $H, H H$ ，L or M ，followed by (Y) ，where（ Y ）may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－or blank Model DFC followed by 0612,0812 or 0912 ，followed by＂A＂or＂B＂，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through Z ， 0 through 9 ＂－ ＂or blank；Model DFD followed by 0612 or 0624 ，followed by $H, H H, L$ or M，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through Z ， 0 through $9, "-$＂or blank；Model SB followed by 0412 ，followed by H, L ，LL or M ，followed by (Y) ，where (Y) may be xxxxx，where x may be A through Z ， through 9，＂－＂or blank；Model SB followed by 0612，0624，followed by HH，followed by（Y），where（Y）may be xxxxx，where x may be A through Z ， 0 through 9，＂－＂or blank；Model SB followed by 0612，0624，0812，0824，followed by H，L or M，followed by（Y），where（Y）may be $x \times x \times x$ ，where \times may be A through Z， 0 through $9,{ }^{n}$－＂or blank；Model SB followed by 0612，0624，followed by HD，LD or MD，followed by（Y），where（ Y ）may be xxxxx，where x may be A through $Z, 0$ through $9, ~ "-$＂or blank；Model SB followed by 0812 ， 0824 ，followed by HH，followed by (Y) ，where（ Y ）may be Xxxxx，where x may be A through Z， 0 through 9，＂－＂or blank；Model SB followed by 0812，followed by MSA or MSG，followed by（Y），where（Y）may be xxxxx，where x may be A through $Z, 0$ through 9，＂－＂or blank；Model AFC0612D（Y）where（ Y ）may be A through $Z, 0$ through 9，＂－＂or blank；Models AFB0612DH－8G33（ Y ），E47199 （ Y ），E47159（Y），DTC－CDA（Y），DTC－CDC（Y），FFR1212DHE（Y），FFR0812DHE（Y），KFB0612HD－8K16（Y），BFB0712HB－8A97（Y），KUC1012D（Y）series，where（Y） may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Models TFA1424AG（Y），TFA1424AGL（Y），TFA1448（X）G（Y），TFA1448AGL（Y）serles， where (X) may be A, B or $C,(Y)$ may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank

Model AFB followed by 02505 ，followed by HA，HHA，LA or MA，followed by (Y) ，where（ Y ）may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 02512 ，followed by HA，HHA，LA or MA，followed by（Y），where（ Y ）may be $x x x x x$ ，where x may be A through Z ， 0 through 9 ＂＿＂or blank；Model AFB followed by 0305，followed by－HA，－LA，－LLA，MA，followed by（Y），where（ Y ）may be $x x x x x$ ，where x may be A through Z ， 0 through 9，＂－＂or blank；Model AFB followed by 0312，followed by－HA，LA，LLA，MA，followed by（Y），where（Y）may be $x \times x \times x$ ，where x may be A through Z， 0 through 9, ＂－＂or blank；Model AFB followed by 03505 ，followed by HA，LA，MA，followed by (Y) ，where（Y）may be $x \times x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0405，followed by HD，LD or MD，followed by（Y），where（Y）may be $x x x x x$ ，where x may be A through Z， 0 through 9，＂－＂or blank；Model AFB followed by 03512 ，rollowed by LA，MA or HA，followed by（ Y ），where（ Y ）may be xxxxx，where x may be A through Z， 0 through $9, "-$＂or blank；Model AFB followed by 0405 ， 0412 or 0424 ，followed by HD，HHD，LD，MD，followed by（ Y ），where（ Y ）may be $x \times x x x$ ，where x may be A through Z， 0 through 9，＂－＂or blank；Model AFB followed by 0412 or 0424，followed by HD，HHD，LD or MD，followed by（Y），where（Y）may be xxxxx，where x may be A through Z， 0 through 9，＂－＂or blank；Model AFB followed by 0505，0512，followed by HA，LA or MA，followed by（Y），where（ Y ） may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0524，followed by HB，HHB，LB or MB，followed by（Y）， where（Y）may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0605，followed by HB，HHB，LB，LLD，MB，followed by（ Y ），where（ Y ）may be xxxxx，where x may be A through $Z, 0$ through $9,{ }^{n}$＂＂or blank；Model AFB followed by 0605 ，followed by LLD，followed by（ Y ）， where（ Y ）may be xxxxx，where x may be A through Z， 0 through 9 ，＂－＂or blank；Model AFB followed by 0605，followed by IIA，LA or MA，followed by（Y） where（ Y ）may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0612 ，followed by HA，HB，HHB，LA，MA or MB， ollowed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂- ＂or blank；Model AFB followed by 0612 or 0624 ，followed by IID， HHD，LB，LD，LLD，MD，VHB or VHD，followed by（Y），where（Y）may be Xxxxx，where x may be A through Z， 0 through 9 ，＂－or blank；Model AFB followed by 0624 ，followed by IIB，IIIIB，LB，MB or VIIB，followed by（Y），where（Y）may be $x \times x x x$ ，where x may be A through Z ， 0 through 9 ，＂－＂or blank；Model AFB followed by 0648 ，followed by $E H, H, H H, L, M, S H$ or $V H$ ，followed by (Y) ，where（ Y ）may be $x \times x x x$ ，where x may be A through $Z, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0705 ，followed by II，L or M，followed by（ Y ），where（ Y ）may be $x \times x x x$ ，where x may be A through $Z, 0$ through 9 ，＂＂or blank；Model AFB followed by 0712 or 0724 ，followed by H，HA，HH，HHA，L，LA，M，MA，VH or VHA，followed by（Y），where（Y）may be $x \times x \times x$ ，where x may

Cooler Master Co．，Ltd．
TEL：＋886（2） 32340050 FAX：＋886（2） 32340051

第 2 頁，共 11 頁
be A through $Z, 0$ through $9,{ }^{n}-$＂or blank；Model AFB followed by 0748 ，followed by $H, H H, L$ or MM，followed by（ Y ），where（ Y ）may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂${ }^{-1}$ or blank；Model AFB followed by 0812 or 0824 ，followed by $L \mathbf{L}$ ，followed by (Y) ，where (Y) may be $x \times x x x$ ，where x may be A through $\mathbf{Z}, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0812 or 0824 ，followed by $H, L, L L, M, S H$ or $V H$ ，followed by (Y) ，where (Y) may be may be A through Z ， 0 through 9 ，＂－＂or blank；Model AFB followed by 0812 or 0824 ，followed by $\mathrm{H}, \mathrm{L}, \mathrm{LL}, \mathrm{M}, \mathrm{SH}$ or VH，followed by（Y），where（Y）may
xxxxx，where x may be A through $\mathrm{Z}, 0$ through 9 ，＂－＂or blank；Model AFB followed by 0812 or 0824 ，followed by HB，HHB，LB，LLB，MB，SHB or VHB，
 followed by（Y）where（Y）may be $x x x x x$ ，where x may be A through Z ， 0 through 9 ，－or blank；Model AFB followed by 0848 ，followed by H ，HH，L or M ， rollowed by（ Y ，where（ Y ）may be $x \times x x x$ ，where x may be A through Z， 0 through 9 ，－or blank；Nodel AFB followed by 0912 or 0924 ，followed by H ， HH ， ，MH D，
ME，followed by (Y) ，where (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂- ＂or blank；Model WFB followed by 1212 ，followed by ME， followed by (Y) where（Y）may be xxxxx，where x may be A VHE follow ，(Y) ，Y ere (Y) may $x \times x \times x$ ，x ， VHE，followed by (Y) ，where（ Y ）may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂＂or blank；Model WFB followed by 1248 ，followed by HHE， $x \times x \times x$ ，where x ， x $x \times x x$ ，where x may be A through Z ， 0 through 9 ，＂＂or blank；Model AFC0912D followed by $(Y$ ），where (Y) may be $x x x x x$ ，where x may be A through Z ， 0
 AFB03512LA－A (Y) ，AFB03512MA－A（Y），AFB03512HA－A（Y），GFB1412EHT（Y），GFC1412DT（Y），AFB0748SH－SP（Y），BFB1712EHT（Y）Series，where（Y）may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂－＂or blank．

Model EFB followed by 0912 or 0924，followed by H，HH，L，M，SH or VH．
Models WFB1 $212 \mathrm{H}(\mathrm{Y})$ ，WFB1212HE（Y），WFB1212M（Y），WFB1212ME（Y），WFB1212L（Y），WFB1212LE（Y），WFB1224H（Y），WFB1224HE（Y），WFB1224M（Y）， WFB1224ME（Y），WFB1224L（Y），WFB1224LE（Y），WFB1212IIIII Y），WFB121211IIE（Y），WFB1224IIII（Y），WFB12241IIIE（Y），WFB1248IIE（Y），WFB1248ME（Y）， WFB1248LE（Y），WFC1212B（Y），WFC1212BE（Y），KFB2348HHV（Y），KFB2348HHU（Y），KFB2348HV（Y），KFB2348HU（Y），KHB2348HHV（Y），KHB2348HHU（Y）， KFB2324\｜IIV（Y），KFB2324\｜IIU（Y），KFB2524\｜IIU（Y）Series，where（Y）may be xxxxx，where \times may be A through Z， 0 through 9 ，＂－＂or blank．

Model BFB followed by 1212,1224 followed by HE．

Model BFB followed by 0305，03505，followed by HP，LP，MP．
Model AFB or ASB followed by 0505 or 0512 ，followed by HA，LA or MA．
Model BFB followed by 0712，0724，followed by I，L，M，suffixed（Y）；Model LFB0512IID（Y）Series，where（Y）may be $x x x x x$ ，where x may be A through Z， 0 through 9，＂－＂or blank．

Model BFC followed by 1212 ，followed by A，B；Models BFC1212C，BFC1224C，BFC1248C，
Model EFB followed by 0512，followed by IIIIA，IIA，LA or MA；Models EFB0505IIA，EFB0505MA，EFB0505LA followed by FOO or STD；Model EFB followed by 0505 ，followed by HA，LA or MA，followed by FOO or STD．

Model AFC followed by 0512， $0612,0712,0812,0824,0912$ or 0924，followed by＂A＂，＂AB＂，＂AD＂，＂B＂，＂BB＂，＂BD＂or＂C＂；Model AFC followed by 0912， followed by＂A＂or＂B＂，followed by $-(H),-(H H),-(M)$ ；Model ASC followed by $0612,0812,0912$ ，followed by＂A＂or＂B＂；Model AFC0712D（Y），where（Y） may be A through $\mathbf{Z}, 0$ through $9,{ }^{\prime}-$＂or blank．

Model ASB followed by 0605，followed by II，L，M，suffixed（Y）；Model ASB followed by 0612，followed by II－SB，L－SB or M－SB，suffixed（Y）；Model ASB followed by 0812 or 0824，followed by H，HH，L，LL or M，suffixed（Y）；Model ASB followed by 0912，0924，followed by H，HH，L，L－V，M，suffixed（Y）；Model ASB followed by 0924，followed by H，HH，L or M，suffixed（Y）；Model ASB0812L－SB，H－SB or M－SB suffixed（Y）；Model ASB0912L－SB，ASB0912H－SB or ASB0912M－SB suffixed（ Y ）；Model DSB followed by 0612，0812，followed by H，H－N，L，L－N，M，M－N，suffixed（Y）；Models DSB0624H－（Y），DSB0624M－（Y）， DSB0624L－（Y），DSB0512HHB（Y），DSB0512HB（Y），DSB0512MB（Y），DSB0512LB（Y），DSB0512MD（Y），DSB0512LD（Y），DSB0612（X）－A（Y），DSB0612（X）D（Y）， DSB0612（A）B（Y）Series，where（A）may be HH，H，M or L ，(X) may be H, M or L ，（ Y ）may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂$=$＂or blank．

Model AFB followed by 0612，followed by II，IIII，L，M，followed by SB；Model AFB followed by 0812，followed by II，Lor M，followed by SB；Model AFB followed by 0912，followed by H，L or M，followed by SB．

Model AFB followed by 1212 ，followed by HE，HHE，LE，ME，VHE；Model AFB followed by 1224 ，followed by HE，HHE，LE，ME，VHE；Model AFB followed by 1248 ，followed by $\mathrm{HE}(\mathrm{Y}), \mathrm{HHE}(\mathrm{Y}), \mathrm{LE}(\mathrm{Y}), \mathrm{ME}(\mathrm{Y}), \mathrm{VHE}(\mathrm{Y}), \mathrm{L}, \mathrm{M}, \mathrm{H}, \mathrm{HH}, \mathrm{VH}, \mathrm{SH}$ ；Model EFB followed by 1212 ，followed by $\mathrm{HE}(\mathrm{Y})$ ， $\mathrm{HHE}(\mathrm{Y}), \mathrm{LE}(\mathrm{Y}), \mathrm{ME}(\mathrm{Y}), \mathrm{SHE}$ （Y），VHE（Y）；Model EFB followed by 1224，followed by HE（Y），HHE（Y），LE（Y），ME（Y），SHE（Y），VHE（Y）；Model EFB followed by 1248 ，followed by HE（Y），HHE $(Y), \operatorname{LE}(Y), \operatorname{ME}(Y), \operatorname{SHE}(Y), \operatorname{VHE}(Y)$ ；Models AFB1212SHE（Y），AFB1212EHE（Y），AFB1212GHE（Y），AFB1224SHE（Y），AFB1224EHE（Y），AFB1224GHE（Y）， AFB1248SHE（Y），AFB1248EHE（Y），AFB1248GHE（Y）；Model AFB1348 followed by SHE（Y），VHE（Y），HHE（Y），HE（Y），where（Y）may be $x \times x \times x$ ，where x may be A through Z ， 0 through 9 ，＂－＂or blank；Model AFB1348 followed by $\operatorname{SHE}(Y)$ ， $\operatorname{VHE}(Y), \operatorname{HHE}(Y)$ ， $\operatorname{HE}(Y)$ ；Models AFB1312SHE (Y) ，AFB1312VHE（Y）， AFB1312HHE（Y），AFB1312HE（Y），AFB1324SHE（Y），AFB1324VHE（Y），AFB1324HHE（Y），AFB1324HE（Y）Series；Models AFB1248MF（Y），AFB1248HF（Y）， AFB1248HHF（Y），AFB1248VHF（Y），AFB1248SHF（Y），AFB1448HE（Y）serles，where（ Y ）may be xxxxx，where x may be A through $Z, 0$ through 9 ，＂－＂or blank．

Model BFB followed by 1012 ，followed by $\mathbf{H}(Y), H H(Y), V H(Y), S H(Y), E H(Y), L(Y), L L(Y)$ or $M(Y)$ ；Model BFB followed by 1024 ，followed by $H, H H, L, L L$ or M，suffixed（ Y ）；Model BFB followed by 1212，followed by H，HH，L，LL，M or VH，suffixed（Y）；Model BFB followed by 1224 ，followed by H ，HH，L，LL or M， suffixed（Y）；Model BFB followed by 1248 ，followed by $H, H H, L, L L$ or M，suffixed（Y）；Models BFC1012D－A（Y），BFB1012VH－3F16（Y），BFB12（X）（Z）－A（Y）； Model SFB0412VH／HH／H／M（Y），BFB04512HA－SM（Y）Serles；Model BFB04512（ X ）（ Y ）serles，where（ X ）may be MD／HD／HHD／VHD，（ Y ）may be（ Y ）may be xxxxx，where x may be A through Z， 0 through 9，＂－＂or blank；Models KFB2548HMU（Y），KFB2548HU（Y），BFB04512MD－S（Y）Series，where（ X ）may be 12 ， 24 or 48 ，(Z) may be $G H, E H, S H$ or $V H,(Y)$ may be (Y) may be $x x x x x$ ，where x may be A through $Z, 0$ through $9, "-"$ or blank．

Model BFB1224HHE－4］97（Y）Series；Model BFB followed by 1212，1224，followed by HE，HHE，LE，ME or VH；Model BFB followed by 1248 ，followed by HE LE or ME；Model BFB followed by 1612，followed by VH，H，L or M；Model BFB followed by 1624，followed by VH，H，L or M；Model BFB followed by 1648 ， followed by VH，H，L or M．

Models BFB0405HE，－LE，－ME，BFB0412HE，－HHE，－LE，－ME；Models BFB0412HN（Y），BSB0412HN（Y），where（Y）may be $x \times x x x$ ，where x may be A through Z， 0 through 9，＂－＂or blank．

Model AUB08（X）（Z）（Y）series，where $(X) 12$ or $24,(Z)$ may be VH，HH，H，M or $L,(Y)$ may be $x x x x x$ ，where x may be A through $Z, 0$ through 9 ，＂- ＂or blank．

CERTIFICATION RECORD

The company named below has been authorized by CSA International to represent the products listed in this record as "CSA Certified" and to affix the CSA Mark to these products according to the terms and conditions of the CSA Service Agreement and applicable CSA program requirements (including additional Markings)

File No: 091949_0_000
Class No: 381201 FANS AND BLOWERS

SUBMITTOR

	Delta Electronics Inc 252 Shang Ying Rd
	Kuei San Taoyuan Hsien, 333 Taiwan
	T0824

FACTORIES
$4510824 \begin{aligned} & \text { 252 Shang Ying Rd } \\ & \text { Kuei San } \\ & \text { Taoyuan Hsien, } 333\end{aligned}$
Taiwan
Delta Electronics (JiangSu) Ltd.
No 1688 Jiangxing East Rd
4665119 Wujiang Economic Development Zone
Wujiang City, Jiangsu 215200
China
Delta Electronics (Thailand) Public
Co., Ltd.
111 Moo 9 Wellgrow Ind Estate
4678360 Bangna-Trad Road, Tambon Bangwua
Amphur Bangpakong
Chachoengsao, Chachoengsao 24180
Thailand

4753103
Delta Electronics
(Dongguan) Co Ltd
HeTianXia High Tech Industrial Pk

Cooler Master Co., Ltd.
TEL: +886 (2) 32340050 FAX: +886 (2) 32340051

Cert.Record No 0919490 000, Class No 3812 01, DQD No 548 Rev.2001-10-31
Page 15 of 90

AFB0848H	48	110	-
AFB0848HH	48	120	-
AFB08512LD	12	140	0 to 9, A to Z, blank or "-"
AFB08512MD	12	200	0 to 9, A to Z, blank or "-"
AFB08512HD	12	270	0 to 9, A to Z, blank or "-"
AFB08512HHD	12	360	0 to 9, A to Z, blank or "-"
AFB08512VHD	12	600	0 to 9, A to Z, blank or "-"
AFB0912H	12	300	STD, F00, R00, F05, R05, RR0, RR05,
A to Z, 0 to 9, blank or "-"			

Cooler Master Co., Ltd.
TEL: +886 (2) 32340050 FAX: +886 (2) 32340051

VDE Prüf- und Zertifizierungsinstitut

GUTACHTEN MIT FERTIGUNGSÜBERWACHUNG CERTIFICATE OF CONFORMITY WITH FACTORY SURVEILLANCE

Delta Electronics Inc.
252 Shangying Road
Guishan Industrial Zone 33341 TAOYUAN COUNTY

TAIWAN
ist berechtigt, für ihr Produkt / is authorized to use for their product
Einbauventilator für IT-Geräte Fan for building-in, IT-equipment
die hier abgebildeten markenrechtlich geschützten Zeichen für die ab Blatt 2 aufgeführten Typen zu benutzen / the legally protected Marks as shown below for the types referred to on page 2 ff .

REG 1764 oder/o
 oder/or VDE-REG 1764

REG 1764

Geprüft und zertifiziert nach /
Tested and certified according to
DIN EN 62368-1 (VDE 0868-1):2016-05; EN 62368-1:2014 IEC 62368-1:2014

VDE Prüf- und Zertifizierungsinstitut
 Ausweis-Nr./ Blatt/ Gutachten mit Fertigungsüberwachung

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder
Delta Electronics Inc., 252 Shangying Road, Guishan Industrial Zone, 33341 TAOYUAN COUNTY, TAIWAN

Aktenzeichen / File ref.	letzte Ånderung / updated	Datum / Date
$5000878-2611-0007 ~ / ~ 259382 ~ / ~ T L 4 ~ / ~ S F K ~$	$2019-03-18$	1994-06-08

Dieses Blatt gilt nur in Verbindung mit Blatt 1 des Gutachtens mit Fertigungsüberwachung Nr. 1764.
This supplement is only valid in conjunction with page 1 of the Certificate of Conformity with factory surveillance No. 1764.

Einbauventilator für IT-Geräte
Fan for building-in, IT-equipment
Typ(en) / Type(s)

ASB0612H/M/L/HH
ASB0624H/M/L/HH
BFB1212HE
AFB0605H/M/L
AFB0505HA/LA/MA
AFB0512HA/LA/MA
BFB0712H/L/M
BFB0724H/L/M
AFB0405LA/MA/HA/HHA
AFB0412LA/MA/HA/HHA
ASB0605L
ASB0605M
ASB0605H
DSB0812L/M/H
AFC0812A/B
AFC0912A/B
BFC1212A/B
BFB1212LL/L/M/H/HH/VH
BFB1224LL/L/M/H/HH/VH
AFB0405LD/MD/HD
AFB0412LD/MD/HD/HHD
AFB0424LD/MD/HD/HHD
AFB0612LA/MA/HA
ASB0812LL/L/M/H/HH
ASB0912L/M/H/HH
ASB0824LL/L/M/H/HH
ASB0924L/M/H/HH
AFB0705L/M/H
AFB0712L/M/H/HH/VH
AFB0724L/M/H/HH/VH

Fortsetzung siehe Blatt $3 /$
continued on page 3

VDE Prüf- und Zertifizierungsinstitut
 Ausweis-Nr./ Blatt/ Gutachten mit Fertigungsüberwachung

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder
Delta Electronics Inc., 252 Shangying Road, Guishan Industrial Zone, 33341 TAOYUAN COUNTY, TAIWAN

Aktenzeichen / File ref.	letzte Änderung / updated	Datum / Date
$5000878-2611-0007 ~ / ~ 259382 ~ / ~ T L 4 ~ / ~ S F K ~$	$2019-03-18$	1994-06-08

Dieses Blatt gilt nur in Verbindung mit Blatt 1 des Gutachtens mit Fertigungsüberwachung Nr. 1764.
This supplement is only valid in conjunction with page 1 of the Certificate of Conformity with factory surveillance No. 1764.

Einbauventilator für IT-Geräte

Fan for building-in, IT-equipment
Typ(en) / Type(s)

AFB0812LL/L/M/H/HH/VH/SH
AFB0824LL/L/M/H/HH/VH/SH
AFB0912L/M/H/HH/VH
AFB0924L/M/H/HH/VH
AFC0612A
AFC0612B
AFB0605LB/MB/HB/HHB
AFB0605LLD/LD/MD/HD/HHD
AFB0612LLD/LD/MD/HD/HHD/VHD
AFB0624LLD/LD/MD/HD/HHD/VHD
AFC0912A/B-(M/H/HH)
AFC0912A/B-F00(M/H/HH)
AFC0912A/B-R00(M/H/HH)
DSB0612L/M/H
BFB1012LL/L/M/H/HH(-F00/R00)
BFB1024LL/L/M/H/HH(-F00/R00)
BFC1012A/B(-F00/F05/R00)
BFC1012C(-F00)
AFB1212LE/ME/HE/HHE/VHE(-F00/F05/R00)
AFB1224LE/ME/HE/HHE/VHE(-F00/F05/R00)
BFB1224LE/ME/HHE(-F00/R00)
BFB1248LE/ME/HE(-F00/R00)
AFB0612/M-SB/H-SB
AFB0912/M-SB/H-SB(F00)
AFB02505LA/MA/HA
AFB02512LA/MA/HA/HHA
AFC0712A/B
AFB0305LLA/LA/MA/HA
AFB0312LLA/LA/MA/HA
ASB0912/M-SB/H-SB

Fortsetzung siehe Blatt $4 /$
continued on page 4

VDE Prüf- und Zertifizierungsinstitut
 Ausweis-Nr. / Beiblatt / Gutachten mit Fertigungsüberwachung

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder
Delta Electronics Inc., 252 Shangying Road, Guishan Industrial Zone, 33341 TAOYUAN COUNTY, TAIWAN

Aktenzeichen / File ref.	letzte Ånderung / updated	Datum / Date
$5000878-2611-0007 ~ / ~ 259382 ~ / ~ T L 4 ~ / ~ S F K ~$	$2019-03-18$	1994-06-08

Dieses Beiblatt ist Bestandteil des Gutachtens mit Fertigungsüberwachung Nr. 1764.
This supplement is part of the Certificate of Conformity with factory surveillance No. 1764.

Einbauventilator für IT-Geräte
 Fan for building-in, IT-equipment

Fertigungsstätte(n)
Place(s) of manufacture

Referenz/Reference 30009495	Delta Electronics (Dongguan) Co., Ltd. Hetianxia village 523300 SHIJIE TOWN, DONGGUAN CITY Guangdong CHINA
$\begin{aligned} & \text { Referenz/Reference } \\ & 30011790 \end{aligned}$	Delta Electronics (Jiang Su) Ltd. No. 1688 Jiangxing East Road Wujiang Economy Developm. Zone 215200 WUJIANG CITY, SUZHOU CITY Jiangsu CHINA
Referenz/Reference 30013236	Delta Electronics (Thailand) Public Co., Ltd. 111 Moo. 9 Wellgrow Industrial Estate Bangna-Trad Road, Tambon Bangwa AMPHUR BANGPAKONG 24180 Chachoengsao THAILAND
Referenz/Reference 30020541	DELTA Electronics (ChenZhou) Co.Ltd. Chen Zhou Export Zone 423038 CHENZHOU Hunan CHINA

TEL: +886 (2) 32340050 FAX: +886 (2) 32340051

VDE Prüf- und Zertifizierungsinstitut
 Ausweis-Nr./ Beiblatt / Gutachten mit Fertigungsüberwachung

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder
Delta Electronics Inc., 252 Shangying Road, Guishan Industrial Zone, 33341 TAOYUAN COUNTY, TAIWAN

```
Aktenzeichen / File ref. letzte Änderung / updated Datum / Date
5000878-2611-0007 / 259382 / TL4 / SFK 2019-03-18 1994-06-08
```

Dieses Beiblatt ist Bestandteil des Gutachtens mit Fertigungsüberwachung Nr. 1764.
This supplement is part of the Certificate of Conformity with factory surveillance No. 1764.

VDE Prüf- und Zertifizierungsinstitut GmbH
VDE Testing and Certification Institute
Fachgebiet TL4
Section TL4

VDE Prüf- und Zertifizierungsinstitut Gutachten mit Fertigungsüberwachung

Ausweis-Nr./ Infoblatt/

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder
Delta Electronics Inc., 252 Shangying Road, Guishan Industrial Zone, 33341 TAOYUAN COUNTY, TAIWAN

Aktenzeichen / File ref.	letzte Änderung / updated	Datum / Date
$5000878-2611-0007 ~ / ~ 259382 ~ / ~ T L 4 ~ / ~ S F K ~$	$2019-03-18$	1994-06-08

Dieses Blatt gilt nur in Verbindung mit Blatt 1 des Gutachtens mit Fertigungsüberwachung Nr. 1764.
This supplement is only valid in conjunction with page 1 of the Certificate of Conformity with factory surveillance No. 1764.

Genehmigung zum Benutzen des auf Seite 1 abgebildeten markenrechtlich geschützten Zeichens des VDE:

Grundlage für die Benutzung sind die Allgemeinen Geschäftsbedingungen (AGB) der VDE Prüf- und Zertifizierungsinstitut GmbH (www.vde.comVAGB-Institut). Das Recht zur Benutzung erstreckt sich nur auf die bezeichnete Firma mit den genannten Fertigungsstätten und die oben aufgeführten Produkte mit den zugeordneten Bezeichnungen. Die Fertigungsstätte muss so eingerichtet sein, dass eine gleichmäßige Herstellung der geprüften und zertifizierten Ausführung gewährleistet ist.
Die Genehmigung ist so lange gültig wie die VDE-Bestimmungen gelten, die der Zertifizierung zugrunde gelegen haben, sofern sie nicht auf Grund anderer Bedingungen aus der VDE Prüf- und Zertifizierungsordnung (PM102) zurückgezogen werden muss.
Der Gültigkeitszeitraum einer VDE-GS-Zeichengenehmigung kann auf Antrag verlängert werden. Bei gesetzlichen und / oder normativen Änderungen kann die VDE-GS-Zeichengenehmigung ihre Gültigkeit zu einem früheren als dem angegebenen Datum verlieren.
Produkte, die das Biozid Dimethylfumarat (DMF) enthalten, dürfen gemäß der Kommissionsentscheidung 2009/251/EG nicht mehr in den Verkehr gebracht oder auf dem Markt bereitgestellt werden.
Der VDE-Zeichengenehmigungsausweis wird ausschließlich auf der ersten Seite unterzeichnet.
Approval to use the legally protected Mark of the VDE as shown on the first page:
Basis for the use are the general terms and conditions of the VDE Testing and Certification Institute (www.vde.comlterms-institute). The right to use the mark is granted only to the mentioned company with the named places of manufacture and the listed products with the related type references. The place of manufacture shall be equipped in a way that a constant manufacturing of the certified construction is assured.
The approval is valid as long as the VDE specifications are in force, on which the certification is based on, unless it is withdrawn according to the VDE Testing and Certification Procedure (PM102E).
The validity period of a VDE-GS-Mark Approval may be prolonged on request. In case of changes in legal and / or normative requirements, the validity period of a VDE-GS-Mark Approval may be shortened.
Products containing the biocide dimethylfumarate (DMF) may not be marketed or made available on the EC market according to the Commission Decision 2009/251/EC.
The approval is solely signed on the first page.

Cooler Master Co., Ltd.

Available for these models with lower speed and same physical structure. All model may be followed by ARxx or AFxx series suffixes. This test report applies to AFB92x92x25.4 mm series as the right table

DC FAN LIFE EXPERIMENT REPORT

Representative Test P/N :AFB0912VH-SP21 (4E64)

AFB0912VH-4E91				
AFB0912VH-4E64				

Equipment:1.Oven: E24-F0032
On/Off Cycles: Every 500 hours
© L_{10} Expectancy: $\quad 70,000$ hours minimum @ fan rated voltage and the temperature of $40^{\circ} \mathrm{C}$
According to the equation for Weibull distribution, \quad MTTF $\fallingdotseq \mathbf{7} \times \mathbf{L 1 0}=\mathbf{4 9 0 , 0 0 0}$ hours
And we rely on a zero failure Weibull test strategy and accelerated testing technique, to determine the total test time (\mathbf{t}) for verifying the above life estimation by the equations,

$$
t=1.036 \times M T T F \times\left[\left(B_{r ; c}\right) \div n\right]^{0.91} \div A_{F}, \text { and } A_{F}=2^{(\mathrm{Ts}-\mathrm{Tu}) / 10}
$$

where, $\left(B_{r, c}\right)$ is Poisson distribution factor with the failure number of r equal to 0 and the decimal confidence level of c equal to $0.90(90 \%)$.

Stress/ElevatedT emperature Ts (${ }^{\circ} \mathrm{C}$) (Actual Test Temperature)	Unstress Temperature $\mathrm{Tu}\left({ }^{\circ} \mathrm{C}\right)$	Acceleration Factor A_{F}	Quantity of Test Devices n (pes)	Poisson Distribution Factor $\mathbf{B}_{\mathrm{ri} ;}$	Required test time with zero failure t (hours)	Actual test time with zero failure t (hours)	$\begin{gathered} \text { Verified MTTF } \\ 40^{\circ} \mathrm{C} \\ \text { (hours) } \end{gathered}$	$\begin{aligned} & \text { Verified } \mathrm{L}_{19} \\ & 40^{\circ} \mathrm{C} \\ & \text { (hours) } \end{aligned}$
60	40	4.00	56	2.303	6,956	6,956.0	490,033	70,005

Test Progress:

| Date for Test Beginning | $\begin{array}{c}\text { Date for Test } \\ \text { Termination (at least) }\end{array}$ | Current Test Status | | |
| :---: | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}Current Total Test

Time (hours)\end{array}\right]\)

Cooler Master Co., Ltd.

DC FAN FUNCTION TEST RECORD FOR LIFE EXPERIMENT

Cooler Master Co., Ltd.

DC FAN FUNCTION TEST RECORD FOR LIFE EXPERIMENT

Equipment:1.Oven: E24-F0032
On/Off Cycles: Every 500 hours

Test Data Between Initial Test and Final Test									
Sample	Initial Test		Deviation	Initial Test	Final Test		Initial Test	Final Test	
No.	Current Spec. (A) 0.44Max.	Current Spec. (A) 0.44Max.	(\%)	Speed Spec. (RPM) 4140-4860	Speed Spec. $\begin{gathered} \text { (RPM) } \\ \mathbf{4 1 4 0 - 4 8 6 0} \end{gathered}$	(\%)	Noise Spec. (dBA) 51.5Max	Noise Spec. (dB A) 51.5Max	(\%)
36	0.34	0.36	5.9	4627	4528	-2.1	48.2	49.0	1.7
37	0.34	0.35	2.9	4594	4448	-3.2	48.5	49.1	1.2
38	0.34	0.33	-2.9	4527	4517	-0.2	48.8	48.7	-0.2
39	0.34	0.34	0.0	4742	4688	-1.1	48.5	48.9	0.8
40	0.29	0.30	3.4	4491	4363	-2.9	48.1	49.1	2.1
41	0.32	0.31	-3.1	4527	4471	-1.2	48.9	49.0	0.2
42	0.30	0.31	3.3	4496	4511	0.3	48.9	49.1	0.4
43	0.32	0.32	0.0	4521	4469	-1.2	48.7	48.9	0.4
44	0.36	0.37	2.8	4725	4733	0.2	48.5	49.0	1.0
45	0.37	0.34	-8.1	4669	4495	-3.7	48.5	48.7	0.4
46	0.32	0.32	0.0	4507	4460	-1.0	48.5	48.9	0.8
47	0.33	0.32	-3.0	4492	4464	-0.6	48.3	49.2	1.9
48	0.35	0.34	-2.9	4622	4643	0.5	48.1	49.1	2.1
49	0.32	0.32	0.0	4527	4461	-1.5	48.3	48.8	1.0
50	0.32	0.33	3.1	4556	4512	-1.0	48.4	49.0	$1: 2$
51	0.31	0.33	6.5	4496	4457	-0.9	48.3	48.7	0.8
52	0.34	0.33	-2.9	4547	4427	-2.6	48.1	48.9	1.7
53	0.32	0.31	-3.1	4529	4500	-0.6	48.5	49.0	1.0
54	0.32	0.34	6.3	4472	4507	0.8	48.2	48.7	1.0
55	0.34	0.34	0.0	4517	4569	1.2	48.4	49.0	1.2
56	0.29	0.31	6.9	4396	4393	-0.1	48.8	49.1	0.6
X-Bar	0.333	0.335	-	4573.9	4528.0	-	48.43	48.90	-
σ	0.017	0.017	-	77.284	83.893	-	0.269	0.143	-
QE File No.		Time-out for function test or others (hrs)		Issued Date		Reported By		Approved By	
DG04FNL240		3452.30		2005/11/15 9:00 AM		Guie.Lin		Gx.Xu	

东 莞 市领亚电线电缆有限公司 Dongguan Linoya Cable\＆Wire Co．，Ltd．
No．2，The Fourth West Industrial Road，High－tech Industrial Development
Zone，Songshan Lake，Dongguan City，Guangdong Province，China Tel：（86）－769－85550688 Fax：（86）－769－85550．398

承 认 书

SPECIFICATION FOR APPROVAL
．产 品： 1061 16AWG～30AWG TS

PRODUCT

料 号： \qquad
PART NO．
客 户： \qquad
CUSTOMER

UL／CSA STANDARD：UL 1061

承认书编号：LY－E1061
SHEET NO．
客户 料号： \qquad
CUSTOMER：NO．

Non－standard： \qquad

日 期：2016－12－05
DATE：
CUSTOMER CONCLUSION：
\checkmark APPROVED（承认） （客户判定）
\square LIMIED（允收）
\square REJECT（拒收）

\square CONDITIONAL APPROVAL（条件认可）

INCLUDING THIS COVER TOTAL 3 PAGES
（含封面页共 3 页）
＊PLEASE SIGNED AND FAX THE RESULT TO US
（请于判定签名后将结果传回）

LY－QPM－FOR－0．53 A／0

东 莞 市 领 亚 电 线 电 缆 有 限 公 司 Dongguan Linoya Cable\＆Wire Co．，Ltd． No．2，The Fourth West Industrial Road，High－tech Industrial Development Zone，Songshan Lake，Dongguan City，Guangdong Province，China Tel：（86）－769－85550688 Fax：（86）－769－85550398 CABLE SPECIFICATION（线材承认书）										
SPEC NO．		LY－E1061				PART1061				
UL FILE NO．		E315618		UL Style			NON－STANDARD			
CSA FILE No．		242699		CSA STYLE		AWM IA	版本		B	
CONSTRUCTION ITEM／结构项目			结构项目							
$\begin{aligned} & \text { CONDU } \\ & \text { CTOR } \\ & \text { 导体 } \end{aligned}$	CONSTRUCTION构造规格	$\begin{gathered} \mathrm{A} \\ \mathrm{~W} \\ \mathrm{G} \end{gathered}$	16AWG	18AWG	20AWG	22AWG	24AWG	26AIVG	28AWG	30AWG
			$\begin{aligned} & 26 / 0.254 \\ & \pm 0.007 \end{aligned}$	$34 / 0.178$ ± 0.007	$\begin{gathered} 21 / 0.178 \\ \pm 0.007 \end{gathered}$	$\begin{aligned} & 17 / 0.160 \\ & \pm 0.007 \end{aligned}$	$\begin{aligned} & 11 / 0.160 \\ & \pm 0.007 \end{aligned}$	$\begin{aligned} & 7 / 0.160 \\ & \pm 0.007 \end{aligned}$	$\begin{aligned} & 7 / 0.127 \\ & \pm 0.007 \end{aligned}$	$\begin{aligned} & 7 / 0.100 \\ & \pm 0.007 \end{aligned}$
	MATERIAL ／导体材质	\cdots	tinned stranded Copper conductor							
	$\underset{\text { FILLER MATERIAL }}{\text { 填充材料 }}$	．－．．．	1							
	OD／绞合外径	mm	1.49	1.20	0.94	0.76	0.61	0.48	0．3．3	0.30
$\begin{aligned} & \text { INSULA } \\ & \text { TION } \\ & \text { 绝缘 } \end{aligned}$	MATERIAL／仏质	\cdots	SR－PVC（LOW METAL）							
	OD／茱线外径	mm	$\begin{aligned} & 2.00 \\ & \pm 0.10 \end{aligned}$	$\begin{gathered} 1.70 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.50 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.30 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.15 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.00 \\ \pm=0.05 \end{gathered}$	$\begin{gathered} 0.90 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 0.80 \\ \pm 0.05 \end{gathered}$
	AVERAGE THICKNESS平均厚度	mm	0.23							
	COLOR／颜色	－－．．．	OPTIONAL							
$\begin{array}{\|c\|} \substack{\text { OUTSID } \\ \text { E-SHIE } \\ \text { LD } \\ \text { 外部造 } \\ \text { 丽 }} \end{array}$	SHIELD／遮瀶方式	－－－	1							
	$\underset{\substack{\text { CONSTRUCTION } \\ \text { 构造 }}}{\substack{\text { and }}}$	．．．．．	1							
	$\begin{aligned} & \text { CONSTRUCTION } \\ & \text { SIZE 构造尺寸 } \end{aligned}$	mm	1							
	MATERIAL／材质	－－．．－	1							
	COVERAGE ／遮蔽率	\％	1.							
$\begin{array}{\|c\|} \hline \mathrm{JACKE} \\ \mathrm{~T} \\ \text { 外被 } \end{array}$	MATERIAL材质	－－－－	1							
	DIAMETER／线径	mm	！							
		mm	－！							
	SURFACE／外观	－．．．．	BRIGHTNESS							
	COLOR颜色	－－	！							
	$\begin{aligned} & \hline \text { MARKING COLOR } \\ & \text { /印字颜色 } \end{aligned}$	－－．－	OPTIONAL							
$\begin{aligned} & \text { MARKI } \\ & \text { NG } \\ & \text { 印字 } \end{aligned}$	MARKING	\cdots	E315618 71 AWM STYLE $106180^{\circ} \mathrm{C}$ 300V（）AWG VW－1 Linoya CSA 242699 AWM $1 A 80^{\circ} \mathrm{C} 300 \mathrm{~V}$ FT1－F－LM							

DC FAN LIFE EXPERIMENT REPORT

Available for these models with lower speed and same physical structure. All model may be followed by ARxx or AFxx series suffixes. This test report applies to AFB92x92x25.4 mm series as the right table

AFB0912VH-4E91				
AFB0912VH-4E64				

Representative Test P/N:AFB0912VH-SP21 (4E64)
Equipment:1.Oven: E24-F0032
L_{10} Expectancy: 70,000 hours minimum @ fan rated voltage and the temperature of $40^{\circ} \mathrm{C}$
According to the equation for Weibull distribution,
MTTF $\fallingdotseq 7 \times \mathrm{L} 10=\quad 490,000$ hours
And we rely on a zero failure Weibull test strategy and accelerated testing technique, to determine
the total test time (\mathbf{t}) for verifying the above life estimation by the equations,

$$
t=1.036 \times \mathbf{M T T F} \times\left[\left(\mathbf{B}_{r ; c}\right) \div n\right]^{0.91} \div A_{F}, \text { and } A_{F}=2^{(\mathrm{Ts}-\mathrm{Tu}) / 10}
$$

where, $\left(\mathrm{B}_{\mathrm{r} ; \mathrm{c}}\right)$ is Poisson distribution factor with the failure number of r equal to 0 and the decimal confidence level of c equal to $0.90(90 \%)$.

Stress/ElevatedT emperature Ts (${ }^{\circ} \mathrm{C}$) (Actual Test Temperature)	$\begin{array}{\|c} \hline \text { Unstress } \\ \text { Temperature } \\ \text { Tu }\left({ }^{\circ} \mathrm{C}\right) \end{array}$	$\begin{gathered} \text { Acceleration } \\ \text { Factor } \\ \mathbf{A}_{F} \end{gathered}$	$\begin{aligned} & \text { Quantity of } \\ & \text { Test Devices } \\ & \mathbf{n}(\mathrm{pcs}) \end{aligned}$	Poisson Distribution Factor $\mathbf{B}_{\mathrm{r}, \mathrm{c}}$	Required test time with zero failure t (hours)	Actual test time with zero failure t (hours)	Verified MTTE $40^{\circ} \mathrm{C}$ (hours)	$\begin{aligned} & \text { Verified } \mathrm{L}_{10} \\ & 40{ }^{\circ} \mathrm{C} \\ & \text { (hours) } \end{aligned}$
60	40	4.00	56	2.303	6,956	6,956.0	490,033	70,005

Test Progress:

Date for Test Beginning	Date for Test Termination (at least)	Current Test Status			Current Total Test Time (hours)
2004/9/7 4:40 PM	2005/11/15 8:31 AM	 In process	In process (exceed requested)	Termination	6956.0

Herewith, we could assume as right on the basis of above test result. Besides, if the actual test time exceed the required, it comes out that those fans' L_{10} expectancy and MTTF are greater than the warrant. (MTTF : means Mean Time To Failures, it should be used in a non-repairable system ssetting. Now we show the MTTF in our life report, that's because we will nott repair the failed fans during life experiment. MTBF: means Mean Time E3etween failures, it should be used in a repairable system setting.)

			50	2.00	245,017	35,002
\$Fan permission criteria for the measurement after tesit : 1. For current, the limit is less than spec.(max.). 0^{2}. For speed, the allowable decrease is less than 15%. $\$$. For noise, the limit is less than spec.(max.). +3 dlB			60	1.00	122,508	17,501
			Test Result		$\begin{aligned} & \square \\ & \square \end{aligned}$	Accept Reject
QE File No.	Time-out for function test or others (hours)	Issued Date	Reported By		Approved By	
DG04FNL240	3452.30	2005/11/15 9:00 AM	Guie.Lin		Gx.Xu	

DC FAN FUNCTION TEST RECORD FOR LIFE EXPERIMENT

Available for these models with lower speed and same physical structure All model may be followed by ARxx or AFxx series suffixes. This test report applies to AFB92x92x25.4 mm series as the right table

AFB0912VH48991				
AFB0912VH-4664				
for Test mination	Sample Size (pes):	Failure (pes):	$\begin{array}{r} \hline \text { Current } \\ \text { Time } \end{array}$	$\begin{aligned} & \hline \text { Total Test } \\ & \text { (hrs) } \end{aligned}$
/15 8:31 AM	56	0	695	
Current	est Status	\square In process	In, nroneses (exceed requested)	$\begin{array}{\|l\|} \hline \text { Termination } \\ \text { The } \end{array}$

Equipment:1.Oven: E24-F0032

Test Data Between Initial Test and Final Test

Sample No.	Initial Test	Final Test	Deviation (\%)	Initial Test	Final Test	Deviation (\%)	Initial Test	Final Test	Deviation (\%)
	Current Spec. (A) 0.44Max.	Current Spec. (A) 0.44Max.		Speed Spec. (RPM) 4140-4860	Speed Spec. (RPM) 4140-4860		Noise Spec. (dB A) 51.5Max	Noise Spec. (dB A) 51.5Мах	
1.	0.34	0.34	0.0	4674	4558	-2.5	48.0	48.7	1.5
2.	0.34	0.33	-2.9	4595	4574	-0.5	48.7	49.0	0.6
3	0.32	0.33	3.1	4494	4444	-1.1	48.2	48.8	1.2
4	0.33	0.33	0.0	4511	4592	1.8	48.5	48.9	0.8
5	0.33	0.33	0.0	4595	4576	-0.4	48.1	48.7	1.2
6	0.35	0.34	-2.9	4629	4434	-4.2	48.7	49.0	0.6
7	0.34	0.35	2.9	4575	4614	0.9	48.2	48.9	1.5
8	0.34	0.34	0.0	4494	4507	0.3	48.8	49.1	0.6
9	0.35	0.35	0.0	4672	4563	-2.3	48.7	48.7	0.0
10	0.32	0.33	3.1	4597	4434	-3.5	48.2	48.9	1.5
11	0.31	0.32	3.2	4616	4526	-1.9	48.5	49.0	1.0
12.	0.31	0.32	3.2	4702	4698	-0.1	48.8	48.9	0.2
13	0.31	0.33	6.5	4599	4545	-1.2	48.7	48.8	0.2
14	0.32	0.35	9.4	4572	4580	0.2	48.5	48.9	0.8
15	0.32	0.32	0.0	4627	4669	0.9	48.2	49.1	1.9
16	0.35	0.36	2.9	4592	4648	1.2	48.5	48.8	0.6
17	0.34	0.32	-5.9	4535	4448	-1.9	48.3	49.0	1.4
18	0.35	0.36	2.9	4627	4661	0.7	48.8	48.9	0.2
19	0.35	0.36	2.9	4575	4579	0.1	48.1	48.7	1.2
20	0.32	0.33	3.1	4497	4448	-1.1	48.2	48.9	1.5
21.	0.36	0.36	0.0	4672	4557	-2.5	48.0	48.9	1.9
22.	0.35	0.34	-2.9	4667	4544	-2.6	48.3	48.7	0.8
23	0.35	0.33	-5.7	4654	4493	-3.5	48.9	48.9	0.0
24	0.35	0.34	-2.9	4661	4532	-2.8	48.7	49.0	0.6
25	0.33	0.34	3.0	4527	4567	0.9	48.4	48.9	1.0
26	0.32	0.32	0.0	4592	4523	-1.5	48.5	48.7	0.4
271	0.34	0.34	0.0	4545	4541	-0.1	48.0	48.7	1.5
28	0.34	0.33	-2.9	4497	4478	-0.4	48.2	48.8	1.2
29	0.33	0.33	0.0	4484	4437	-1.0	48.5	49.1	1.2
30	0.34	0.31	-8.8	4500	4375	-2.8	48.1	49.0	1.9
3 L	0.34	0.32	-5.9	4541	4486	-1.2	48.2	48.7	1.0
32.	0.35	0.36	2.9	4492	4568	1.7	48.6	48.8	0.4
33	0.34	0.34	0.0	4749	4556	-4.1	48.9	48.9	0.0
34	0.36	0.38	5.6	4621	4678	1.2	48.4	48.8	0.8
35	0.35	0.35	0.0	4595	4515	-1.7	48.1	48.7	1.2
QE File No.		Time-out for function test or others (hours)		Issued Date		Reported By		Approved By	
DG04FNL240		3452.30		2005/11/15 9:00 AM		Guie.Lin		Gx.Xu	

DC FAN FUNCTION TEST RECORD FOR LIFE EXPERIMENT

Available for these models with lower speed and same physical structure. All model may be followed by ARxx or AFxx series suffixes. This test report applies to AFB92x92x25.4 mm series as the right table			AFB0912VH-4E91				
			AFB0912VH-4E64				
Required Test Time (hrs)	Date for Test Beginning	Date for Test Termination		Sample Size (pes):	Failure (pes):	Current Total Test Time (hrs)	
6,956	2004/9/7 4:40 PM	2005/11/15 8:31 AM		56	0	6956.0	
Representative Test P/N :AFB0912VH-SP21 (4E64)			Current Test Status		In process	In process (exceed requested)	\square Termination
Equipment:1.Oven: E24-F0032							

Sample	Initial Test	Final Test	Deviation	Initial Test	Final Test	Deviation	Initial Test	Final Test	Deviation
No.	Current Spec. (A) 0.44Max.	Current Spec. (A) 0.44Max.	(\%)	$\begin{gathered} \text { Speed Spec. } \\ \text { (RPM) } \\ \mathbf{4 1 4 0 - 4 8 6 0} \end{gathered}$	Speed Spec. (RPM) 4140-4860	(\%)	Noise Spec. (dB A) 51.5Max	Noise Spec. (dB A) 51.5Мах	(\%)
36	0.34	0.36	5.9	4627	4528	-2.1	48.2	49.0	1.7
37	0.34	0.35	2.9	4594	4448	-3.2	48.5	49.1	1.2
38	0.34	0.33	-2.9	4527	4517	-0.2	48.8	48.7	-0.2
39	0.34	0.34	0.0	4742	4688	-1.1	48.5	48.9	0.8
40	0.29	0.30	3.4	4491	4363	-2.9	48.1	49.1	2.1
41	0.32	0.31	-3.1	4527	4471	-1.2	48.9	49.0	0.2
42.	0.30	0.31	3.3	4496	4511	0.3	48.9	49.1	0.4
43	0.32	0.32	0.0	4521	4469	-1.2	48.7	48.9	0.4
44	0.36	0.37	2.8	4725	4733	0.2	48.5	49.0	1.0
45	0.37	0.34	-8.1	4669	4495	-3.7	48.5	48.7	0.4
46	0.32	0.32	0.0	4507	4460	-1.0	48.5	48.9	0.8
471	0.33	0.32	-3.0	4492	4464	-0.6	48.3	49.2	1.9
48	0.35	0.34	-2.9	4622	4643	0.5	48.1	49.1	2.1
49	0.32	0.32	0.0	4527	4461	-1.5	48.3	48.8	1.0
50	0.32	0.33	3.1	4556	4512	-1.0	48.4	49.0	1.2
51.	0.31	0.33	6.5	4496	4457	-0.9	48.3	48.7	0.8
52.	0.34	0.33	-2.9	4547	4427	-2.6	48.1	48.9	1.7
53	0.32	0.31	-3.1	4529	4500	-0.6	48.5	49.0	1.0
54.	0.32	0.34	6.3	4472	4507	0.8	48.2	48.7	1.0
55	0.34	0.34	0.0	4517	4569	1.2	48.4	49.0	1.2
56	0.29	0.31	6.9	4396	4393	-0.1	48.8	49.1	0.6
X-Bar	0.333	0.335	-	4573.9	4528.0	-	48.43	48.90	-
σ	0.017	0.017	-	77.284	83.893	-	0.269	0.143	-
QE File No.		Time-out for function test or others (hrs)		Issued Date		Reported By		Approved By	
DG04FNL240		3452.30		2005/11/15 9:00 AM		Guie.Lin		Gx.Xu	

