

Rev.0.2 May. 2023 0

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

Particulate Matter Sensor Module
IAGM2
Specification Sheet Rev.0.2

Rev.0.2 May. 2023 1

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

IAGM2 is a digital particulate matter(PM2.5, PM10) sensor. Idea for indoor air quality monitoring,

outdoor pollution monitoring or wireless sensor networks to detect particulate matter concentration

near the installation location. This sensor is a proven and maintenance-free technology, designed for

high performance and reliability.

Key Feature & Benefits:

l Fast response and recovery time

l High stability & long life

l Low cost but high performance

l Wide operating ranges

u temperature: -10 to +50°C

u humidity: 15 to 90%

u VDD: 4.75V to 5.25V

l Hassle-free

on-chip data processing – no need for external libraries – no impact on MCU

Applications:

l Building Automation / smart home / HVAC

u Demand-controlled ventilation

u Smoke detection

l Home appliances

u Air cleaners

u Purifiers

l Air quality monitors

l IoT devices

Rev.0.2 May. 2023 2

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

Block diagram:

 The IAGM2 digital particulate matter sensor based on optical scattering technology, and a controller as
shown in the functional block diagram below.

Specification:

The following figure details the electrical characteristics of the sensor.

Model IAGM2

Detection PM2.5 , PM10

Principle Optical scattering(Laser)

Measurement range 0 to 1000 μ g/m3

Resolution 1 μ g/m3

Accuracy ±10±10% of reading μ g/m3

Response time(T90) <10 sec

Operation temp. -10 to 50 °C

Operation Humidity 15 to 90 %RH

Expected operating life 3 years

Power supply 4.75 to 5.25 V

Power consumption 110 mW

Interface I2C

Dimension(mm) 58(L) 48(W) 15.5(H) mm

Rev.0.2 May. 2023 3

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

Dimensions:

Pin assignment:

Pins Name Type Function

1 VDD Supply Power supply (5V)

2 SDA Input / Output I2C bus Bi-Directional data

3 SCL Input / Output I2C bus Bi-Directional clock

4 GND Supply Ground

Side view

Top view Bottom view

Rev.0.2 May. 2023 4

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

I2C Communication:

n I2C description:

This sensor is an I2C slave device with a fixed 7-bit address 59h. The I2C interface supports standard

(100kbit/s), and fast (400kbit/s) mode. Details on I2C protocol is according to I2C-bus specifications

[UM10204, I2C-bus specification and user manual, Rev. 6, 4 April 2014].

The device applies all mandatory I2C protocol features for slaves: START, STOP, Acknowledge and 7-

bit slave address. None of the other optional features (10-bit slave address, general call, software reset

or Device ID) are supported, nor are the master features (Synchronization, Arbitration, START byte).

The Host System, as an I2C master, can directly read or write values to one of the registers by first
sending the single byte register address. This sensor implements “auto increment” which means that

it is possible to read or write multiple bytes* (e.g. read multiple DATA_X bytes) in a single transaction.

*NB: Please do not read or write more than 16 bytes.

n I2C timing information:

Rev.0.2 May. 2023 5

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

1. Guaranteed by design, not tested in production.

2. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge

the undefined region of the falling edge of SCL.

4. The maximum hold time of the Start condition has only to be met if the interface does not stretch

the low period of SCL signal.

n I2C operation circuitry:

The recommended application circuit for the sensor I2C interface operation is shown in below.

Rev.0.2 May. 2023 6

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

n I2C Access Protocol:

I2C write operation:

TBD

I2C read operation:

Write register address first, then read data.

I2C register:

Address Data Size Access Description

0000h PID 8 Read

Product ID

Return device product code.

(ASCII Code format.)

0008h FW 8 Read
Firmware version
Return device firmware version.

(ASCII Code format.)

0010h SNO 16 Read

Serial Number

Return device serial Number.
(ASCII Code format.)

0020h Status 1 Read

Module status

0: Normal operation

1: Warm-Up phase
2: Error case

0021h PM2.5 2 Read

PM2.5 concentration

unit: 0.1 μ g/m3

e.g. 100 = 10 μ g/m3

0023h PM10 2 Read

PM10 concentration

unit: 0.1 μ g/m3

e.g. 100 = 10 μ g/m3

ID = 59h (CO Module 7-bits I2C address)

S = START condition
P = STOP condition
A = acknowledge (SDA LOW)

NA = not acknowledge (SDA HIGH)
W = WRITE (SDA LOW)

R = READ (SDA HIGH)

S ID W A Reg Addr High A Reg Addr Low A P

S ID R A Data High A Data Low NA P

 Master to Slave
 Slave to Master

Rev.0.2 May. 2023 7

Sysinno Technology
17F.-7, No.27, Guanxin Rd., Hsinchu City 300052, Taiwan

Contact Us: service@sysinnotec.com

n Example Code:

#define SlaveDeviceID 0x59
#define ProductID_RegAddr 0x00
#define FWVersion_RegAddr 0x08
#define SNO_RegAddr 0x10
#define PM2p5Data_RegAddr 0x21
#define PM2p5Data_Length 2
#define INI_PM_ugm3 0
#define UL_PM_ugm3 1000
#define LL_PM_ugm3 0
#define IIROrder 4
#define PM_Slope 1 //Declare it as a variable for runtime calibration.
#define PM_Offset 0 //Declare it as a variable for runtime calibration.
#define BYTE0(arg) (*((Uchar *)&(arg) + 0))
#define BYTE1(arg) (*((Uchar *)&(arg) + 1))
//==
// Function :I2C_ReadData
// Format :void I2C_ReadData(uint8_t DeviceID, uint16_t RegAddr, uint8_t *i2cbuf, uint8_t Length)
// Explain :Read device data via i2c
// Parameter :DeviceID : I2C slave device address
// RegAddr : Data register address
// i2cbuf : Store the data read from the device.
// Length : Indicate the number of reading bytes.
// Return :Error code: 0: success, !=0: fail
//==
extern uint32_t I2C_ReadData(uint8_t DeviceID, uint16_t RegAddr, uint8_t *i2cbuf, uint8_t Length);
int16_t ErrorCount = 0;
int32_t PM_IIR = INI_PM_ugm3;
int32_t iTmpPM, PM25Data;
uint8_t I2CBuffer[16]; //for I2C buffer
int main(void)
{
 //Do system initialization based on your host MCU.
 system_init();
 //Below is an example showing how to read PM module data once per second.
 while(1)
 {

 if(I2C_ReadData(SlaveDeviceID, PM2p5Data_RegAddr, I2CBuffer, PM2p5Data_Length) != 0) //Read PM module data
 {
 //Read PM data fail! Do some error process, below is an example.
 ErrorCount++;
 }
 else
 {
 ErrorCount = 0;
 BYTE1(iTmpPM)=I2CBuffer[0];
 BYTE0(iTmpPM)=I2CBuffer[1];
 }
 //Add some data filters here, below is an example.
 if (PM_IIR <= INI_PM_ugm3)
 PM_IIR = iTmpPM;
 else
 PM_IIR = ((PM_IIR * (IIROrder-1)) + iTmpPM) / IIROrder;//IIR filter (3/4 Old + 1/4 New)

 PM2p5Data = PM_IIR * PM_Slope + PM_Offset; //Calibration mechanisms

 if (PM2p5Data > UL_PM_ppm) PM2p5Data = UL_PM_ppm; //Clamp upper limit
 if (PM2p5Data < LL_PM_ppm) PM2p5Data = LL_PM_ppm; //Clamp lower limit

 if (ErrorCount)
 printf("Read PM2.5 Data Fail!\n");
 else
 printf("Read PM2.5 Data OK! PM2.5:%d ug/m3\n", PM2p5Data/100);
 HAL_Delay(1000); //delay 1000ms
 }
}

