

IBD185

ST STM32F103VBT6
GPIO MiniPCIe Daughter Card

USER GUIDE
Version 1.0

2 IBD185 User Guide

Table of Contents
IBD185 Connectors Pin Definition 3

IBD185 Mechanical Drawing .. 4

IBD185 Driver Installation .. 5

IBD185 MCU Protocol Specification 7

1 Software Requirements .. 7
1.1 Description .. 7
1.1.1 GPIO configuration 7
1.1.2 GPIO status ... 7
1.1.3 I2C Bus interface 7
1.2 Protocol ... 7
1.2.1 Signal transmission format 7
1.2.2 Packet Format ... 8
1.2.3 CRC ... 8
1.2.4 Communications flow 8
1.3 Command and Reply Codes 9
1.3.1 Summary ... 9
1.3.2 Get Mcu Firmware Version 9
1.3.3 Get GPIO Configuration 10
1.3.4 Set GPIO Configuration 11
1.3.5 Get GPIO Status 12
1.3.6 Set GPIO Status 13
1.3.7 I2C Bus Interface Sub Command Set 14

I2C Bus Initialize .. 15
I2C Bus Enable ... 16
I2C Device Status ... 17
I2C Device Read/Write 18
I2C Device Read ... 19
I2C Device Write ... 21
I2C Bus Reset ... 23

APPENDIX .. 24

 IBD185 User Guide 3

IBD185
ST STM32F103VBT6

GPIO MiniPCIe Daughter Card

IBD185 Connectors Pin Definition
J1, J2 for I2C

Pin # Signal Name
1 SCL
2 SDA
3 GND

 J3 Supports 16-in GPIO

Signal Name Pin # Pin # Signal Name
3.3V 2 1 3.3V
DIN8 4 3 DIN0
DIN9 6 5 DIN1
DIN10 8 7 DIN2
DIN11 10 9 DIN3
DIN12 12 11 DIN4
DIN13 14 13 DIN5
DIN14 16 15 DIN6
DIN15 18 17 DIN7
Ground 20 19 Ground

J4 Supports 16-out GPIO

Signal Name Pin # Pin # Signal Name
3.3V 2 1 3.3V

OUTPUT24 4 3 OUTPUT16
OUTPUT25 6 5 OUTPUT17
OUTPUT26 8 7 OUTPUT18
OUTPUT27 10 9 OUTPUT19
OUTPUT28 12 11 OUTPUT20
OUTPUT29 14 13 OUTPUT21
OUTPUT30 16 15 OUTPUT22
OUTPUT31 18 17 OUTPUT23

Ground 20 19 Ground

4 IBD185 User Guide

IBD185 Mechanical Drawing

 IBD185 User Guide 5

IBD185 Driver Installation

1. In the Windows OS, go to the Computer Management screen. In the
‘Other devices’ as shown, right click the “STM32 Virtual COM Port”
Properties.

2. In the STM32 Virtual COM Port Properties screen, click Update
Driver.
3. In the Hardware Update Wizard screen, select “No, not this time” and
click Next to continue.
4. Select “Install from a list or specific location (Advanced), and click
Next to continue.
5. To choose the “search” and “installation” options, click the checkbox
of “Include this location in the search”, and click Browse to find the
driver’s path in the CD provided or enter the path directly -
\SCSI\IBD185\iBASE_CDC.inf

6 IBD185 User Guide

6. Click Continue Anyway.

7. Click Finish to close the wizard.

8. There are a total of two serial ports. Therefore, the Hardware Update
Wizard procedure has to be repeated for the rest of the serial ports

 IBD185 User Guide 7

IBD185 MCU Protocol Specification

1 Software Requirements

1.1 Description
MCU provides the following functionality:

1.1.1 GPIO configuration
Software can configure the functionality of GPIO pins on MCU.
MCU provides commands to configure the pin function as digital input
or digital output.

1.1.2 GPIO status
Software can control the output pin and get the status of input pin on
MCU.
MCU provides commands to control the output of pin which is
configured as an output pin or to read back the status of pin which is
configured as input pin.

1.1.3 I2C Bus interface
Software can perform I2C bus operation on MCU.
MCU provides command interface to control the I2C bus master on it.

1.2 Protocol

1.2.1 Signal transmission format

Bandwidth
Baud rate: 115200 bps.

Data Format
Parity: No Parity
1 start bit
8 data bits
1 stop bit

8 IBD185 User Guide

1.2.2 Packet Format

Header Size Command Data CRC
2 bytes 1 byte 1 byte 0 – 64 bytes 2 bytes

Header

bytes indicate start of the packet.

Size
specifies number of bytes for data field.

CRC
verifies data integrity for header, size, command and data bytes.

Command
identifies action, which is required to be performed on the data.

1.2.3 CRC

Protocol uses 16-bit CCITT CRC to verify data integrity.
P(x) = X16+X12+X5+1.

unsigned calc_crc(unsigned char *data, unsigned n, unsigned start)
 {
 unsigned I, k, q, c, crcval;
 crcval=start;
 for (I=0; I<n; I++)

{
 c=data(I) & 0xFF;
 q=(crcval^c) & 0x0F;
 crcval=(crcval>>4)^(q*0x1081);
 q=(crcval^(c>>4)) & 0x0F;
 crcval=(crcval>>4)^(q*0x1081);
 }
 return crcval;
}

1.2.4 Communications flow

Communication between PC and MCU utilizes Master-Slave
model, where PC is a master, and MCU is a slave.
Master sends requests to the slave, and slave has to reply to
them. Slave acts like a passive device and cannot send any
requests to the master.

 IBD185 User Guide 9

1.3 Command and Reply Codes

1.3.1 Summary

Code Value Description
GET_FIRMWARE_VERSION 0x80 Get MCU Firmware Version

GET_GPIO_CONFIG 0x8A Get GPIO configuration

SET_GPIO_CONFIG 0x8B Set GPIO configuration

GET_GPIO_STATUS 0x8C Get GPIO Status

SET_GPIO_STATUS 0x8D Set GPIO Status

I2C_API_COMMAND 0x8E I2C Bus Interface Command

<Note>The command 0xF0 ~ 0xFF is the reserved command for
instruction controller.

1.3.2 Get Mcu Firmware Version

Read version number of the MCU firmware

Request
Header Size Command Data CRC
0xFF
0xEE

0x00 GET_FIRMWARE_VERSION None

Reply
Header Size Command Data CRC
0xFF
0xEE

Size of
Version
structure

GET_FIRMWARE_VERSION Version
structure

Version Structure

Field Type Description
Major version byte Major version number

Minor version byte Minor version number

Build byte Build number

10 IBD185 User Guide

1.3.3 Get GPIO Configuration

Read the GPIO pin configuration of the MCU

Request
Header Size Command Data CRC
0xFF
0xEE

0x00 GET_GPIO_CONFIG GPIO Pin Index

The “GPIO Pin Index” of GPIO pin is count from 0.

Reply
Header Size Command Data CRC
0xFF
0xEE

Size of
GpioPinCfg
structure

GET_GPIO_CONFIG GpioPinCfg
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure.
The format is listed below:

GpioPinCfg Structure

Field Type Description
Pin Index byte Pin Index

0x00 – 1st pin index
0x01 – 2nd pin index
……
0xFF – All of the pins

Pin Config Array of
byte

Pin Configuration
0x00 – as a digital input pin
0x01 – as a digital output pin

The length of “Pin Config” is depends on the
number of “Pin Index”.

If the specific index is 0xFF means all of the
pins.

Host can retrieve configurations of all GPIO pins by sending a request
packet with designating the field “Pin Index” in “GpioPinCfg” as 0xFF.
Device will reply a packet with all GPIO pins configurations in sequential
bytes array. The “Pin Config[]” bytes array are in order of the GPIO pin
index.

 IBD185 User Guide 11

1.3.4 Set GPIO Configuration

Set up the GPIO pin configuration of the MCU

Request
Header Size Command Data CRC

0xFF 0xEE

0x00 SET_GPIO_CONFIG GPIO Pin Index

The “GPIO Pin Index” of GPIO pin is count from 0.

Reply
Header Size Command Data CRC
0xFF
0xEE

Size of
GpioPinCfg
structure

SET_GPIO_CONFIG GpioPinCfg
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure.
The format is listed below:

GpioPinCfg Structure

Field Type Description
Pin Index byte Pin Index

0x00 – 1st pin index
0x01 – 2nd pin index
……
0xFF – All of the pins

Pin Config Array of
byte

Pin Configuration
0x00 – as a digital input pin
0x01 – as a digital output pin

Host can set configurations of all GPIO pins by sending a request packet
with designating the field “Pin Index” in “GpioPinCfg” as 0xFF.
Device will reply a packet with all GPIO pins configurations in sequential
bytes array. The “Pin Config[]” bytes array are in order of the GPIO pin
index.

12 IBD185 User Guide

1.3.5 Get GPIO Status

Read the GPIO pin group status of the MCU

The status of a GPIO pin is represented by a byte of bitmap that groups
8 pins status in one register. This status bitmap is only valid for output
pins. Therefore the retrieved status bitmap should be masked with the
pin configurations of this group.

Request
Header Size Command Data CRC
0xFF
0xEE

0x00 GET_GPIO_STATUS GPIO Group Index

The “GPIO Group Index” is count from 0 and can be calculated simply by
a formula: GPIO Group Index = (GPIO Pin Index/8)

Reply
Header Size Command Data CRC
0xFF
0xEE

Size of
GpioGrpStatus
structure

GET_GPIO_STATUS GpioGrpStatus
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure. The format is listed below:

GpioGrpStatus Structure

Field Type Description
Group Index byte Group Index

0x00 – 1st group index
0x01 – 2nd group index
……
0xFF – All of the groups

Group Status Array of
byte

Status bitmap of grouped pins
bit 0 .. bit 7 for each of the pin signal and the
bitmapping define is
listed below :
0[bit] – signal level Low (logic 0)
1[bit] – signal level High (logic 1)

Host can retrieve status of all GPIO pins by sending a request packet
with designating the field “Group Index” in “GpioGrpStatus” as 0xFF.
Device will reply a packet with all GPIO pins status in sequential bytes
array. The “Group Status[]” bytes array are in order of the GPIO group
index. Besides, the bit sequence in a “Group Status” byte is mapping to
the order of pin index in the same GPIO group.

 IBD185 User Guide 13

1.3.6 Set GPIO Status

Set up the GPIO pin group status of the MCU

The status of a GPIO pin is represented by a byte of bitmap that groups
8 pins status in one register. This status bitmap is only valid for output
pins. Please make the settings of status bitmap according to the pin
configurations of this group.

Request
Header Size Command Data CRC
0xFF
0xEE

Size of
GpioGrpStatus
structure

SET_GPIO_STATUS GPIO Group
Index

The “GPIO Group Index” is count from 0 and can be calculated simply by
a formula: GPIO Group Index = (GPIO Pin Index/8)

Reply
Header Size Command Data CRC
0xFF
0xEE

Size of
GpioGrpStatus
structure

SET_GPIO_STATUS GpioGrpStatus
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure. The format is listed below:

GpioGrpStatus Structure

Field Type Description
Group Index byte Group Index

0x00 – 1st group index
0x01 – 2nd group index
……
0xFF – All of the groups

Group Status Array of
byte

Status bitmap of grouped pins
bit 0 .. bit 7 for each of the pin signal and the
bitmapping define is
listed below :
0[bit] – signal level Low (logic 0)
1[bit] – signal level High (logic 1)

Host can set status of all GPIO output pins by sending a request packet
with designating the field “Group Index” in “GpioGrpStatus” as 0xFF.
Device will reply a packet with all GPIO pins status in sequential bytes
array. The “Group Status[]” bytes array are in order of the GPIO group
index. Besides, the bit sequence in a “Group Status” byte is mapping to
the order of pin index in the same GPIO group.

14 IBD185 User Guide

1.3.7 I2C Bus Interface Sub Command Set

This command set is a subset of the IB protocol command.
It provides an interface for HOST to control the I2C bus master on
DEVICE side.

The sub command set is constructed by a specific command ID
(I2C_API_COMMAND) in “Command” field of packet, and the payloads
are embedded in “Data” field.

Header Size Command Data CRC
2 bytes 1 byte 1 byte 0 – 64 bytes 2 bytes

Sub Command

Length
Sub Command

Code
Sub Command

Data
1 byte 1 byte 0 – 32 bytes

The supported command of I2C bus interface command set list below:

Code Symbol Description
0x01 I2CAPI_BUS_INIT Initial the specific I2C bus master
0x02 --- reserved
0x03 I2CAPI_BUS_ENABLE Enable/Disable the specific I2C bus

0x04 I2CAPI_DEV_STATUS Detect the slave status on the
specific I2C bus.

0x05 I2CAPI_DEV_READ Perform I2C device read operation

0x06 I2CAPI_DEV_WRITE Perform I2C device write operation

0x07 I2CAPI_BUS_RESET Reset the specific I2C bus

0x08 --- reserved

Here is a simple illustration of the interface functions in pseudo code.

I2C_Bus_Init(BusID,Speed);

I2C_Bus_Enable(BusID,Enabled);

I2C_Device_Detect(BusID,SlvAddr);

I2C_Device_Read(BusID,SlvAddr,CmdLen,CmdCode[8],Flag,DatLen,
DatBuff[32]);

I2C_Device_Write(BusID,SlvAddr,CmdLen,CmdCode[8],Flag,DatLen,
DatBuff[32]);

I2C_Bus_Reset(BusID,Flag);

Sub Command Set

 IBD185 User Guide 15

I2C Bus Initialize

Initialize the I2C bus master on MCU.
Start up an I2C bus with specific Bus ID and Speed.
The Bus ID can be 1 or 2.
Bus ID is 1 means the I2C1 on MCU, and so on.
The Speed can be 0, 1, 2.
Speed=0 means de-initialize the I2C Bus.
Speed=1 means initialize the specific I2C Bus in 400Kbps.
Speed=2 means initialize the specific I2C Bus in 100Kbps (default).

Sub Command Request
Sub
Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiBusInit
structure

I2CAPI_BUS_INIT I2cApiBusInit structure

Sub Command Reply
Sub
Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiBusInit
structure +1

I2CAPI_BUS_INIT I2cApiBusInit structure followed by
one byte I2cApiResult

The reply packet contains the parameters that device received and
followed by one byte of result.
I2cApiResult = 0 means the execution result is fail.

I2cApiBusInit Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Bus Speed byte I2C bus speed selection
0: De-Initialize the specific I2C bus
1: 400Kbps
2: 100Kbps (default)

16 IBD185 User Guide

I2C Bus Enable

Enable/Disable the specific I2C bus master on MCU.

Sub Command Request
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiBusEnabled
structure

I2CAPI_BUS_ENABLE I2cApiBusEnabled structure

Sub Command Reply
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiBusEnabled
structure +1

I2CAPI_BUS_ENABLE I2cApiBusEnabled structure
followed by one byte
I2cApiResult

The reply packet contains the parameters that device received and
followed by one byte of result.
I2cApiResult = 0 means the execution result is fail.

I2cApiBusEnabled Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Bus Enabled byte I2C bus enabled
0: Disable
1: Enable

 IBD185 User Guide 17

I2C Device Status

Try to detect the slave device status on the specific I2C bus.

The slave address should be
left shift one bit to skip the position
of the LSB (R/W bit).

For Example:
Stuff the slave address with 0xA0
to designate the slave device which
7 bits slave address is 0x50.

Sub Command Request
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiDevStatus_T
structure

I2CAPI_DEV_STATUS I2cApiDevStatus_T
structure

I2cApiDevStatus_T Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Slv Addr byte 7bits I2C slave address

Sub Command Reply
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiDevStatus_R
structure+1

I2CAPI_DEV_STATUS I2cApiDevStatus_R
structure followed by
one byte I2cApiResult

The reply packet contains the I2cApiBusStatus_R structure and followed
by one byte of result.
I2cApiResult = 0 means the execution result is fail.

I2cApiDevStatus_R Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Slv Addr byte I2C slave address
Slv Status

byte Status of the specific slave address
 0:Not ready (Busy/Fail)
 1:Ready

18 IBD185 User Guide

I2C Device Read/Write

The two interfaces are providing generic command format for I2C bus
read/write operation.

The generic command format of an I2C operation can be shown below:

BudID SlvAdd CmdLen CmdCode Flag DatLen DatBuff
Bud ID
1:I2C1
2:I2C2

(7bits
SADD
<<1)

Length of
CmdCode

Command
code

0:Normal
1:Block

Length of
DatBuff

Data
bytes

Limitation:
The max length of command code limits in 8 bytes.
The max length of data byte limits in 32 bytes.

The generic command can be varied to several types of I2C read/write
operations. Such as Byte Write/Byte Read, Word Write/Word Read,
Sequential Write/Sequential Read, and Block Write/Block Read.

Stuff the command interface with proper arguments to perform different
kinds of I2C read/write depends on your needs.

Please refer to the user’s manual of your I2C slave device to transmit the
I2C command in correct format.

 IBD185 User Guide 19

I2C Device Read

Perform an I2C bus read operation.

Sub Command Request
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiDevRead_T
structure

I2CAPI_DEV_READ I2cApiDevRead_T structure

I2cApiDevRead_T Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Slv Addr byte I2C slave address
Cmd Len byte Length of the following command code
Cmd Code Array of byte command code
Flag byte operation flag

0x00: Normal operation
0x01: Block operation

Dat Len byte Number of the data bytes you want to read.

20 IBD185 User Guide

Sub Command Reply
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiDevRead_R
structure

I2CAPI_DEV_READ I2cApiDevRead_R structure
It contains the read back
data.

The reply packet contains the I2cApiDevRead_R structure.

The I2cApiDevRead_R structure returns the device received significant
arguments and followed by one byte result.
If the read operation has performed successfully, the result would be
equal to the value of “Dat Len” and the retrieved sequential reading
data bytes should concatenated to the result byte in the rear of packet,
otherwise the read operation has error, the returned packet would be
without reading data bytes.

I2cApiDevRead_R Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Slv Addr byte I2C slave address
Cmd Len byte Length of the command code
Flag byte operation flag

0x00: Normal operation
0x01: Block operation

Dat Len byte Length of the data byte
Result byte Operation result

Result >=0 and Result <=32 : Done
Result >32 : Error

The read operation is Success if the “Result”
is equal to the number of bytes you want to
read.

Dat Buff Array of byte Data bytes
The data bytes to read in sequence.

 IBD185 User Guide 21

I2C Device Write

Perform an I2C bus write operation.

Sub Command Request
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiDevWrite_T
structure

I2CAPI_DEV_WRITE I2cApiDevWrite_T structure

I2cApiDevWrite_T Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Slv Addr byte I2C slave address
Cmd Len byte Length of the following command code
Cmd Code Array of byte command code
Flag byte operation flag

0x00: Normal operation
0x01: Block operation

Dat Len byte Number of the data bytes you want to write.
Dat Buff Array of byte Data bytes

The data bytes to write in sequence.

22 IBD185 User Guide

Sub Command Reply
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiDevWrite_R
structure

I2CAPI_DEV_WRITE I2cApiDevWrite_R structure

The reply packet contains the I2cApiDevWrite_R structure.

The I2cApiDevWrite_R structure returns the device received significant
arguments and followed by one byte result.

I2cApiDevWrite_R Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Slv Addr byte I2C slave address
Cmd Len byte Length of the command code
Flag byte operation flag

0x00: Normal operation
0x01: Block operation

Dat Len byte Length of the data byte
Result byte Operation result

Result >=0 and Result <=32 : Done
Result >32 : Error

The read operation is Success if the “Result”
is equal to the number of bytes you want to
write.

 IBD185 User Guide 23

I2C Bus Reset

Reset the specific I2C bus master on MCU.

Sub Command Request
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiBusReset
structure

I2CAPI_BUS_RESET I2cApiBusReset structure

Sub Command Reply
Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
I2cApiBusReset
structure +1

I2CAPI_BUS_RESET I2cApiBusReset structure
followed by one byte
I2cApiResult

The reply packet contains the parameters that device received and
followed by one byte of result.
I2cApiResult = 0 means the execution result is fail.

I2cApiBusReset Structure

Field Type Description
Bus ID byte Designate which I2C bus on MCU

1 – 1st I2C bus master
2 – 2nd I2C bus master

Flag byte Flag for reset I2C bus
0: Re-Config I2C bus (default)
1: Reset I2C bus (reserved)

24 IBD185 User Guide

APPENDIX

A protocol instruction example for I2C read/write operation:
The I2C device (24C02 EEPROM) is connected to the I2C1 Bus on MCU.
(7bits SlaveAddress: 0x50, 8 bytes per page)

Page Write from address 0x00 on 24C02
REQUEST PACKET:
Header Size Command
0xFF,
0xEE

16 0x8E

Data CRC

Sub
Cmd
Len

Sub
Cmd
Code

Sub Cmd Data

14 0x06
BudID SlvAdd CmdLen CmdCode
0x01
(I2C1)

0xA0
(0x50
<<1)

 1 0x00
(writing
from 0x00)

Flag DatLen DatBuff
0x00

8 0x00,0x01,0x02,0x03,
0x04,0x05,0x06,0x07

0x8E,
0x61

REPLY PACKET:
Header Size Command
0xFF,
0xEE

8 0x8E

Data CRC

Sub
Cmd
Len

Sub
Cmd
Code

Sub Cmd Data

6 0x06
BudID SlvAdd CmdLen
0x01
(I2C1)

0xA0
(0x50
<<1)

 1

Flag DatLen Result
0x00

8 8
(Result==DatLen
means success)

0x7E,
0x38

 IBD185 User Guide 25

Read 8 bytes from address 0x00 on 24C02
REQUEST PACKET:
Header Size Command
0xFF,
0xEE

8 0x8E

Data CRC

Sub
Cmd
Len

Sub
Cmd
Code

Sub Cmd Data

6 0x05
BudID SlvAdd CmdLen CmdCode
0x01
(I2C1)

0xA0
(0x50
<<1)

 1 0x00
(reading
from 0x00)

Flag DatLen
0

8

0xD0,
0x5E

REPLY PACKET:
Header Size Command
0xFF,
0xEE

16 0x8E

Data CRC

Sub
Cmd
Len

Sub
Cmd
Code

Sub Cmd Data

14 0x05
BudID SlvAdd CmdLen
0x01
(I2C1)

0xA0
(0x50
<<1)

 1

Flag DatLen Result DatBuff
0

8 8
(Result==
DatLen
means
success)

0x00,0x01,
0x02,0x03,
0x04,0x05,
0x06,0x07

0xD9,
0xD0

	Table of Contents
	MCU provides the following functionality:
	1.1.1 GPIO configuration
	Software can configure the functionality of GPIO pins on MCU.
	MCU provides commands to configure the pin function as digital input or digital output.
	1.1.2 GPIO status
	Software can control the output pin and get the status of input pin on MCU.
	MCU provides commands to control the output of pin which is configured as an output pin or to read back the status of pin which is configured as input pin.
	1.1.3 I2C Bus interface
	Software can perform I2C bus operation on MCU.
	MCU provides command interface to control the I2C bus master on it.
	1.2.1 Signal transmission format
	Bandwidth
	Baud rate: 115200 bps.
	Data Format
	Parity: No Parity
	1 start bit
	8 data bits
	1 stop bit
	1.2.2 Packet Format
	Header
	bytes indicate start of the packet.
	1.2.3 CRC
	Protocol uses 16-bit CCITT CRC to verify data integrity.
	P(x) = X16+X12+X5+1.
	unsigned calc_crc(unsigned char *data, unsigned n, unsigned start)
	{
	unsigned I, k, q, c, crcval;
	crcval=start;
	for (I=0; I<n; I++)
	{
	c=data(I) & 0xFF;
	q=(crcval^c) & 0x0F;
	crcval=(crcval>>4)^(q*0x1081);
	q=(crcval^(c>>4)) & 0x0F;
	crcval=(crcval>>4)^(q*0x1081);
	}
	return crcval;
	}
	1.2.4 Communications flow
	Communication between PC and MCU utilizes Master-Slave model, where PC is a master, and MCU is a slave.
	Master sends requests to the slave, and slave has to reply to
	them. Slave acts like a passive device and cannot send any requests to the master.
	Description
	Value
	Code
	Get MCU Firmware Version
	0x80
	GET_FIRMWARE_VERSION
	Get GPIO configuration
	0x8A
	GET_GPIO_CONFIG
	Set GPIO configuration
	0x8B
	SET_GPIO_CONFIG
	Get GPIO Status
	0x8C
	GET_GPIO_STATUS
	Set GPIO Status
	0x8D
	SET_GPIO_STATUS
	I2C Bus Interface Command
	0x8E
	I2C_API_COMMAND

