IBD185

ST STM32F103VBT6
GPIO MiniPCle Daughter Card

USER GUIDE

Version 1.0

Table of Contents

IBD185 Connectors Pin Definition......ccceoeveeiiiiiiiiiennnennn. 3
IBD185 Mechanical Drawing.......cccccccoevecviiveeeeiee e, 4
IBD185 Driver Installationcc.coooovviviiieeiiiieiiieeeiieeeee 5
IBD185 MCU Protocol Specification........cccccceeeeeviinnnnee. 7
1 Software Requirements.........cccccvvveeeeeeeesicciiineeeennn. 7

1.1 DescCription.....cccccceveveviieeiiiiieieeeeeeeeeeeeeeeeeeeee 7

1.1.1 GPIO configuration...........cccceeeeerivreeennnnn 7

1.1.2 GPIO StatuSccevnieeeiiee e, 7

1.1.3 12C Bus interfaCecccoevvevevieriierieeeeennnnn, 7

1.2 ProtoCOl......ccoooveviieiiiiiiieeee e 7

1.2.1 Signal transmission format........................ 7

1.2.2 Packet Format.......ccoooeeveeeiiivieeiieieeeeeennen, 8

1.2.3 CRC o 8

1.2.4 Communications flowccceevvrvveerrernnnnnn. 8

1.3 Command and Reply Codes..............cceneee. 9

1.3.1 SUMMAIY oo 9

1.3.2 Get Mcu Firmware Version.........ccccceeen..... 9

1.3.3 Get GPIO Configurationcccccceeeee.. 10

1.3.4 Set GPIO Configuration.............c..cceeeene 11

1.3.5 Get GPIO Status.......cccvvvvvviiiiieiieceeee, 12

1.3.6 Set GPIO StatusS........ccevvevevivviiieieiiieeeeennn, 13

1.3.7 12C Bus Interface Sub Command Set 14

[2C BUS INtIAliZE.....cceeveiiieei e, 15

[2C BUS Enablecovvviiiieiiiiiie e, 16

[2C Device StatuScoevvvivveieieveeeeeeeeeeevn 17

[12C Device Read/WIitecvovvvveveeeiiiiiieeeeivinn 18

[2C Device Read..........cccoeeeeiiiiiiieiiiiieieeceeeeeei 19

[2C DeVice WIEooeveeeieee e 21

[2C BUS RESEL...ccvniiieieeieieeeeee e, 23
APPENDIX ... 24

2 IBD185 User Guide

IBD185
ST STM32F103VBT6
GP10O MiniPCle Daughter Card

IBD185 Connectors Pin Definition

J1,J2 for I12C
_ Pin # Signal Name
0oo 1 SCL
SV 2 SDA
3 GND
J3 Supports 16-in GPIO
Signal Name | Pin# | Pin# | Signal Name
3.3V 2 1 3.3V
ofa ol DINS8 4 3 DINO
o DIN9 6 5 DIN1
s DIN10 8 7 DIN2
o DIN11 10 9 DIN3
oo DIN12 12 11 DIN4
5o DIN13 14 13 DINS
202 =19 DIN14 16 15 DING
DIN15 18 17 DIN7
Ground 20 19 Ground
J4 Supports 16-out GPIO
Signal Name | Pin# | Pin# | Signal Name
3.3V 2 1 3.3V
ofa ol OUTPUT?24 4 3 OUTPUT16
o OUTPUT25 6 5 OUTPUT17
s OUTPUT26 8 7 OUTPUT18
o OUTPUT27 10 9 OUTPUT19
oo OUTPUT28 12 11 OUTPUT20
5o OUTPUT29 | 14 13 | OUTPUT21
20l= =19 | OUTPUT30 16 15 OUTPUT22
OUTPUT31 18 17 OUTPUT23
Ground 20 19 Ground

|
IBD185 User Guide

IBD185 Mechanical Drawing

J1J2

A

U1

o,

-I —
|E J5o
|

k.

ﬁ’

|
4 IBD185 User Guide

IBD185 Driver Installation

1. In the Windows OS, go to the Computer Management screen. In the
‘Other devices’ as shown, right click the “STM32 Virtual COM Port”

Properties.
T, Device Manager mﬁ]m

Fle acien View Help
mFs FM A xE8

= B 0000-rAIA T
d Computer
) e Dish chrives
@ Duplay sdspters
¥ (g Homan [rkerfacs Deices
+1 (3 IOE ATAJATAR] controliers
o Kevboards
31 7' Miee and ther pointing devioes
v Moraers
4 M Neswicek aclaptors
= “H Cther devices
Ll 51132 vl COM Porl
4§ Pouts (COM & 1PT)
= M Frocessans
i B Serure Digial host conbelines
= B, sound, wideo and game controlers

2 Sysbem dervices.
¥ Unbvrrsal Serial Fags controllers

2. In the STM32 Virtual COM Port Properties screen, click Update
Driver.

3. In the Hardware Update Wizard screen, select “No, not this time” and
click Next to continue.

4. Select “Install from a list or specific location (Advanced), and click
Next to continue.

5. To choose the “search” and “installation” options, click the checkbox
of “Include this location in the search”, and click Browse to find the
driver’s path in the CD provided or enter the path directly -
\SCSI\IBD185\iBASE_CDC.inf

Hardware Update Wizard

Please choose your seaich and installation options. .

() Search for the best driver in these locations.

Usze the check boxes below ta limit or expand the default seaich, which includes local
paths and removable media. The best driver found will be installed

[[1 Search removable media (floppy, CO-ROM...)

Include this location in the search

[DASCSINBD185YEASE_CDC.in] v

(2 Don't search. | will choose the driver to install.

Choose this option to select the device driver from a list. “Windows does naot guarantee that
the driver you chooze will be the best match for your hardware.

< Back “ Meut > l[Cancel

|
IBD185 User Guide 5

6. Click Continue Anyway.

Har dware Installation

] The software you are installing for this hardware:
LY
iBASE_CDC

has not passed Windows Lago testing to verify its compatibility

with Windows <P [Tell me why this testing is important.]

inuing your i ion of this zofb may impair
or destabilize the conect operation of your system
either inmediately or in the future. Microzoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
passed Windows Logo testing.

[LContinue Anywway] ‘ STOP Installation |

7. Click Finish to close the wizard.

Hardware Update Wizard

Completing the Hardware Update
Wizard

The wizard has finished installing the software for:

(y {BASE_CDC

Click Finish to close the wizard,

Finish

8. There are a total of two serial ports. Therefore, the Hardware Update
Wizard procedure has to be repeated for the rest of the serial ports

Ele fction Yew Help
S fm Y =na

= B 0Co0-097036AT20 F
w i Compater
i Dok i
W Deplay sdapters
¥ [Human Tnberface Dovioes
=) IDE ATAJATART controlers
* i Keyboards
) Mize aved e pusinding dhenvices
+) Morkors
¥ B Neawork adapeers

= Purts (COM BLPT)
F Commnicstions Port (LML)
o Comricationn Port (COM2)

o Comunications Pert (LOM)

5
o Prokes Fork (LP11)
& Processos
. securs igital host controers
. Sound, viden and game controliers
o Systen devices “

6 IBD185 User Guide

IBD185 MCU Protocol Specification

1 Software Requirements

1.1 Description
MCU provides the following functionality:

1.1.1 GPIO configuration

Software can configure the functionality of GP1O pins on MCU.

MCU provides commands to configure the pin function as digital input
or digital output.

1.1.2 GPIO status

Software can control the output pin and get the status of input pin on
MCU.

MCU provides commands to control the output of pin which is
configured as an output pin or to read back the status of pin which is
configured as input pin.

1.1.3 12C Bus interface
Software can perform 12C bus operation on MCU.
MCU provides command interface to control the 12C bus master on it.

1.2 Protocol

1.2.1 Signal transmission format

Bandwidth
Baud rate: 115200 bps.

Data Format
Parity: No Parity
1 start bit

8 data bits

1 stop bit

|
IBD185 User Guide 7

1.2.2 Packet Format

Header |Size Command |Data CRC
2 bytes |1 byte |1 byte 0 — 64 bytes 2 bytes
Header

bytes indicate start of the packet.

Size
specifies number of bytes for data field.

CRC
verifies data integrity for header, size, command and data bytes.

Command
identifies action, which is required to be performed on the data.

1.2.3 CRC

Protocol uses 16-bit CCITT CRC to verify data integrity.
P(x) = X16+X12+X5+1.

unsigned calc_crc(unsigned char *data, unsigned n, unsigned start)
{

unsigned 1, k, q, c, crcval;

crcval=start;

for (1=0; I<n; I++)

{
c=data(l) & OxFF;
g=(crcval™c) & OxOF;
crcval=(crcval>>4)"N(q*0x1081);
g=(crcval™(c>>4)) & OxOF;
crcval=(creval>>4)"N(q*0x1081);
¥

return crcval;

bs

1.2.4 Communications flow

Communication between PC and MCU utilizes Master-Slave
model, where PC is a master, and MCU is a slave.

Master sends requests to the slave, and slave has to reply to
them. Slave acts like a passive device and cannot send any
requests to the master.

|
8 IBD185 User Guide

1.3 Command and Reply Codes

1.3.1 Summary

Code

Value Description

GET_FIRMWARE_VERSION|0x80 |Get MCU Firmware Version

GET_GPIO_CONFIG

Ox8A |Get GPIO configuration

SET_GPIO_CON

FIG

0x8B [Set GPIO configuration

GET_GPIO_STATUS

0x8C |Get GPIO Status

SET_GPIO_STATUS

0x8D |Set GPIO Status

12C_API_COMMAND

Ox8E |I12C Bus Interface Command

<Note>The command OxFO — OxFF is the reserved command for
instruction controller.

1.3.2 Get Mcu Firmware Version

Read version number of the MCU firmware

Request
Header Size Command Data CRC
OxFF 0x00 GET_FIRMWARE_VERSION [None
OxEE
Reply
Header Size Command Data CRC
OxFF Size of GET_FIRMWARE_VERSION |Version
OXEE Version structure
structure

Version Structure

Field

Type

Description

Major version

byte

Major version number

Minor version

byte

Minor version number

Build

byte

Build number

|
IBD185 User Guide

1.3.3 Get GPIO Configuration

Read the GPIO pin configuration of the MCU

Request

Header Size Command Data CRC
OxFF 0x00 GET_GPIO_CONFIG GPIO Pin Index

OXEE

The “GPIO Pin Index” of GPIO pin is count from O.

Reply
Header Size Command Data CRC
OxFF Size of GET_GPIO_CONFIG GpioPinCfg
OXEE GpioPinCfg structure
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure.

The format is listed below:

GpioPinCfg Structure
Field Type Description

Pin Index byte Pin Index

0x00 — 1st pin index

0x01 — 2nd pin index

OxXFF — All of the pins

Pin Config Array of |Pin Configuration

byte 0x00 — as a digital input pin
0x01 — as a digital output pin

The length of “Pin Config” is depends on the
number of “Pin Index”.

If the specific index is OxFF means all of the
pins.

Host can retrieve configurations of all GPIO pins by sending a request
packet with designating the field “Pin Index” in “GpioPinCfg” as OxFF.
Device will reply a packet with all GPIO pins configurations in sequential
bytes array. The “Pin Config[]” bytes array are in order of the GPIO pin
index.

|
10 IBD185 User Guide

. __|
1.3.4 Set GPIO Configuration

Set up the GPIO pin configuration of the MCU

Request
Header Size Command Data CRC
OxFF OxEE |Ox00 SET_GPIO_CONFIG GPIO Pin Index

The “GPIO Pin Index” of GPIO pin is count from 0.

Reply
Header Size Command Data CRC
OxFF Size of SET_GPIO_CONFIG GpioPinCfg
OxEE GpioPinCfg structure
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure.

The format is listed below:

GpioPinCfg Structure
Field Type Description

Pin Index byte Pin Index

0x00 — 1st pin index

0x01 — 2nd pin index

OxFF — All of the pins

Pin Config Array of|Pin Configuration

byte 0x00 — as a digital input pin
0x01 — as a digital output pin

Host can set configurations of all GPIO pins by sending a request packet
with designating the field “Pin Index” in “GpioPinCfg” as OxFF.

Device will reply a packet with all GPIO pins configurations in sequential
bytes array. The “Pin Config[]” bytes array are in order of the GPIO pin
index.

|
IBD185 User Guide 11

1.3.5 Get GPIO Status

Read the GPIO pin group status of the MCU

The status of a GPIO pin is represented by a byte of bitmap that groups
8 pins status in one register. This status bitmap is only valid for output
pins. Therefore the retrieved status bitmap should be masked with the
pin configurations of this group.

Request

Header Size Command Data CRC
OxFF 0x00 GET_GPIO_STATUS GPIO Group Index

OXEE

The “GPI1O Group Index” is count from O and can be calculated simply by
a formula: GPIO Group Index = (GPIO Pin Index/8)

Reply
Header Size Command Data CRC
OxFF Size of GET_GPIO_STATUS GpioGrpStatus
OXEE GpioGrpStatus structure
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure. The format is listed below:

GpioGrpStatus Structure
Field Type Description

Group Index byte Group Index

0x00 — 1st group index

0x01 — 2nd group index

OxFF — All of the groups

Group Status |Array of|Status bitmap of grouped pins

byte bit O .. bit 7 for each of the pin signal and the
bitmapping define is

listed below :

O[bit] — signal level Low (logic 0)

1[bit] — signal level High (logic 1)

Host can retrieve status of all GPIO pins by sending a request packet
with designating the field “Group Index” in “GpioGrpStatus” as OxFF.
Device will reply a packet with all GPIO pins status in sequential bytes
array. The “Group Status[]” bytes array are in order of the GPIO group
index. Besides, the bit sequence in a “Group Status” byte is mapping to
the order of pin index in the same GPIO group.

|
12 IBD185 User Guide

|
1.3.6 Set GPIO Status
Set up the GPIO pin group status of the MCU

The status of a GPIO pin is represented by a byte of bitmap that groups
8 pins status in one register. This status bitmap is only valid for output
pins. Please make the settings of status bitmap according to the pin
configurations of this group.

Request
Header Size Command Data CRC
OxFF Size of SET_GPIO_STATUS GPIO Group
OXEE GpioGrpStatus Index
structure

The “GPIO Group Index” is count from O and can be calculated simply by
a formula: GPIO Group Index = (GPIO Pin Index/8)

Reply
Header Size Command Data CRC
OxFF Size of SET_GPIO_STATUS GpioGrpStatus
OXEE GpioGrpStatus structure
structure

Device reply a packet without “Data” field (“Size” is 0, none “Data”)
means fail. If the request performed successfully, device will reply a
packet with specific data structure. The format is listed below:

GpioGrpStatus Structure
Field Type Description

Group Index byte Group Index

0x00 — 1st group index

0x01 — 2nd group index

OxFF — All of the groups

Group Status |Array of|Status bitmap of grouped pins

byte bit O .. bit 7 for each of the pin signal and the
bitmapping define is

listed below :

O[bit] — signal level Low (logic 0)

1[bit] — signal level High (logic 1)

Host can set status of all GPIO output pins by sending a request packet
with designating the field “Group Index” in “GpioGrpStatus” as OxFF.
Device will reply a packet with all GPIO pins status in sequential bytes
array. The “Group Status[]” bytes array are in order of the GPIO group
index. Besides, the bit sequence in a “Group Status” byte is mapping to
the order of pin index in the same GPIO group.

|
IBD185 User Guide 13

|
1.3.7 12C Bus Interface Sub Command Set

This command set is a subset of the IB protocol command.
It provides an interface for HOST to control the 12C bus master on
DEVICE side.

The sub command set is constructed by a specific command ID
(12C_API_COMMAND) in “Command” field of packet, and the payloads
are embedded in “Data” field.

Header | Size | Command Data CRC

2 bytes |1 byte| 1 byte 0 — 64 bytes 2 bytes

Sub Command Set

Sub Command | Sub Command Sub Command
Length Code Data
1 byte 1 byte 0 — 32 bytes

The supported command of 12C bus interface command set list below:

Code Symbol Description
0x01 12CAPI_BUS_INIT Initial the specific 12C bus master
0x02 - reserved

0x03 I12CAPI_BUS_ENABLE | Enable/Disable the specific 12C bus

0x04 I2CAPI_DEV_STATUS | Detect the slave status on the
specific 12C bus.

0x05 I12CAPI_DEV_READ Perform 12C device read operation

0x06 I12CAPI_DEV_WRITE Perform 12C device write operation

0x07 12CAPI_BUS_RESET Reset the specific 12C bus

0x08 - reserved

Here is a simple illustration of the interface functions in pseudo code.
12C_Bus_Init(BusID,Speed);

12C_Bus_Enable(BusID,Enabled);
12C_Device_Detect(BuslD,SIvAddr);

12C_Device_Read(BusID,SlvAddr,CmdLen,CmdCode[8],Flag,DatLen,
DatBuff[32]);

12C_Device_Write(BusID,SlvAddr,CmdLen,CmdCode[8],Flag,DatLen,
DatBuff[32]);

12C_Bus_Reset(BuslID,Flag);

14 IBD185 User Guide

I2C Bus Initialize

Initialize the 12C bus master on MCU.

Start up an 12C bus with specific Bus ID and Speed.

The Bus ID can be 1 or 2.

Bus ID is 1 means the 12C1 on MCU, and so on.

The Speed can be O, 1, 2.

Speed=0 means de-initialize the 12C Bus.

Speed=1 means initialize the specific 12C Bus in 400Kbps.
Speed=2 means initialize the specific 12C Bus in 100Kbps (default).

Sub Command Request

Sub Sub Command Sub Command
Command Code Data
Length

size of the 12CAPI_BUS_INIT |[lI2cApiBuslnit structure
12cApiBusinit

structure

Sub Command Reply

Sub Sub Command Sub Command
Command Code Data

Length

size of the 12CAPI_BUS_INIT [I2cApiBuslnit structure followed by
12cApiBuslnit one byte 12cApiResult

structure +1

The reply packet contains the parameters that device received and
followed by one byte of result.
12cApiResult = 0 means the execution result is fail.

12cApiBuslnit Structure
Field Type Description
Bus ID byte Designate which 12C bus on MCU

1 — 1st 12C bus master
2 — 2nd 12C bus master

Bus Speed byte 12C bus speed selection

0: De-Initialize the specific 12C bus
1: 400Kbps

2: 100Kbps (default)

|
IBD185 User Guide 15

I2C Bus Enable

Enable/Disable the specific 12C bus master on MCU.

Sub Command Request

Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the

structure

12cApiBusEnabled

12CAPI_BUS_ENABLE

12cApiBusEnabled structure

Sub Command Reply

Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the

structure +1

12cApiBusEnabled

12CAPI_BUS_ENABLE

12cApiBusEnabled structure
followed by one byte
12cApiResult

The reply packet contains the parameters that device received and
followed by one byte of result.
12cApiResult = 0 means the execution result is fail.

12cApiBusEnabled Structure

Field Type Description
Bus ID byte Designate which 12C bus on MCU
1 — 1st 12C bus master
2 — 2nd 12C bus master
Bus Enabled byte 12C bus enabled
0: Disable
1: Enable

|
IBD185 User Guide

16

|
I2C Device Status

Try to detect the slave device status on the specific 12C bus.

The slave address should be
left shift one bit to skip the position | 1 | 0 | 1 | 0 | D| 0 | 0 h;w|
of the LSB (R/W bit).

? bits slave address (l]x.'il:l)

For Example:
Stuff the slave address with OxXAO

to designate the slave device which | ! | i | 3 | 9 | D| 4 | D| ¢ |
7 bits slave address is 0x50. l+— SLAVE ADDRESS OxAQ —»|
Sub Command Request
Sub Command Sub Command Sub Command
Length Code Data
size of the I2CAPI_DEV_STATUS |l12cApiDevStatus_T
12cApiDevStatus_T structure
structure
12cApiDevStatus T Structure

Field Type Description
Bus ID byte Designate which 12C bus on MCU

1 — 1st 12C bus master
2 — 2nd 12C bus master
Slv Addr byte 7bits 12C slave address

Sub Command Reply

Sub Command Sub Command Sub Command
Length Code Data

size of the I2CAPI_DEV_STATUS |lI2cApiDevStatus_R
I12cApiDevStatus_R structure followed by
structure+1 one byte I12cApiResult

The reply packet contains the 12cApiBusStatus_R structure and followed
by one byte of result.
12cApiResult = 0 means the execution result is fail.

12cApiDevStatus R Structure
Field Type Description
Bus ID byte Designate which 12C bus on MCU

1 — 1st 12C bus master
2 — 2nd 12C bus master

Slv Addr byte 12C slave address

Slv Status byte Status of the specific slave address
0:Not ready (Busy/Fail)
1:Ready

IBD185 User Guide 17

|
I12C Device Read/Write

The two interfaces are providing generic command format for 12C bus
read/write operation.

The generic command format of an 12C operation can be shown below:

BudID | SIVAdd |CmdLen | CmdCode Flag DatLen | DatBuff

Bud ID |(7bits Length of [Command |0:Normal |Length of |Data

1:12C1 |SADD CmdCode |code 1:Block |DatBuff |bytes
2:12C2 |<<1)
Limitation:

The max length of command code limits in 8 bytes.
The max length of data byte limits in 32 bytes.

The generic command can be varied to several types of 12C read/write
operations. Such as Byte Write/Byte Read, Word Write/Word Read,
Sequential Write/Sequential Read, and Block Write/Block Read.

Stuff the command interface with proper arguments to perform different
kinds of 12C read/write depends on your needs.

Please refer to the user’s manual of your 12C slave device to transmit the
12C command in correct format.

18 IBD185 User Guide

12C Device Read

Perform an 12C bus read operation.

Sub Command Request

Length

Sub Command

Sub Command

Code

Sub Command
Data

size of the

structure

12cApiDevRead_T

12CAPI_DEV_READ

12cApiDevRead_T structure

I2cApiDevRead_T Structure

Field Type Description
Bus ID byte Designate which 12C bus on MCU
1 — 1st 12C bus master
2 — 2nd 12C bus master
Slv Addr byte 12C slave address
Cmd Len byte Length of the following command code
Cmd Code |Array of byte |command code
Flag byte operation flag
0x00: Normal operation
0x01: Block operation
Dat Len byte Number of the data bytes you want to read.

IBD185 User Guide

19

Sub Command Reply

Sub Command Sub Command Sub Command
Length Code Data

size of the I12CAPI_DEV_READ 12cApiDevRead_R structure
12cApiDevRead_R It contains the read back
structure data.

The reply packet contains the 12cApiDevRead_R structure.

The 12cApiDevRead_R structure returns the device received significant

arguments and followed by one byte result.

If the read operation has performed successfully, the result would be
equal to the value of “Dat Len” and the retrieved sequential reading
data bytes should concatenated to the result byte in the rear of packet,
otherwise the read operation has error, the returned packet would be
without reading data bytes.

12cApiDevRead R Structure
Field Type Description
Bus ID byte Designate which 12C bus on MCU
1 — 1st 12C bus master
2 — 2nd 12C bus master

Slv Addr byte 12C slave address
Cmd Len byte Length of the command code
Flag byte operation flag

0x00: Normal operation

0x01: Block operation

Dat Len byte Length of the data byte

Result byte Operation result

Result >=0 and Result <=32 : Done
Result >32 : Error

The read operation is Success if the “Result”
is equal to the number of bytes you want to
read.

Dat Buff Array of byte |Data bytes
The data bytes to read in sequence.

|
20 IBD185 User Guide

I12C Device Write

Perform an 12C bus write operation.

Sub Command Request

Length

Sub Command

Sub Command

Sub Command

Code Data

size of the

structure

12cApiDevWrite_T

I12CAPI_DEV_WRITE

12cApiDevWrite_T structure

12cApiDevWrite_T Structure

Field Type Description
Bus ID byte Designate which 12C bus on MCU
1 — 1st 12C bus master
2 — 2nd 12C bus master
Slv Addr byte 12C slave address
Cmd Len byte Length of the following command code
Cmd Code |Array of byte |command code
Flag byte operation flag
0x00: Normal operation
0x01: Block operation
Dat Len byte Number of the data bytes you want to write.
Dat Buff Array of byte |Data bytes

The data bytes to write in sequence.

IBD185 User Guide

21

Sub Command Reply

Sub Command Sub Command Sub Command
Length Code Data

size of the I2CAPI_DEV_WRITE |lI2cApiDevWrite_R structure
12cApiDevWrite_R

structure

The reply packet contains the 12cApiDevWrite_R structure.

The 12cApiDevWrite_R structure returns the device received significant
arguments and followed by one byte result.

12cApiDevWrite R Structure

Field Type Description
Bus ID byte Designate which 12C bus on MCU
1 — 1st 12C bus master
2 — 2nd 12C bus master
Slv Addr byte 12C slave address
Cmd Len byte Length of the command code
Flag byte operation flag
0x00: Normal operation
0x01: Block operation
Dat Len byte Length of the data byte
Result byte Operation result

Result >=0 and Result <=32 : Done
Result >32 : Error

The read operation is Success if the “Result”
is equal to the number of bytes you want to
write.

22

IBD185 User Guide

I2C Bus Reset

Reset the specific 12C bus master on MCU.

Sub Command Request

Sub Command Sub Command Sub Command
Length Code Data

size of the 12CAPI_BUS_RESET |lI2cApiBusReset structure
12cApiBusReset

structure

Sub Command Reply

Sub Command
Length

Sub Command
Code

Sub Command
Data

size of the
12cApiBusReset
structure +1

12CAPI_BUS_RESET

12cApiBusReset structure
followed by one byte
12cApiResult

The reply packet contains the parameters that device received and

followed by one

byte of result.

12cApiResult = 0 means the execution result is fail.

12cApiBusReset Structure

Field

Type

Description

Bus ID

byte Designate which 12C bus on MCU
1 — 1st 12C bus master
2 — 2nd 12C bus master

Flag

byte Flag for reset 12C bus
0: Re-Config 12C bus (default)
1: Reset 12C bus (reserved)

|
IBD185 User Guide 23

APPENDIX

A protocol instruction example for 12C read/write operation:
The 12C device (24C02 EEPROM) is connected to the 12C1 Bus on MCU.
(7bits SlaveAddress: 0x50, 8 bytes per page)

Page Write from address 0x00 on 24C02
REQUEST PACKET:

Header| Size |Command

OxFF, 16 Ox8E
OXEE

Data CRC

Ox8E,

Sub | Sub Sub Cmd Data Ox61
Cmd | Cmd

Len | Code
14 | Ox06

BudID |SIVAdd | CmdLen | CmdCode
0x01 OxAO0 1 0x00
(12C1) |(Ox50 (writing
<<1) from 0x00)

Flag |DatLen DatBuff

0x00 |8 0x00,0x01,0x02,0x03,
0x04,0x05,0x06,0x07

REPLY PACKET:
Header| Size |Command

OxFF, 8 Ox8E
OXEE

Data CRC

OX7E,

Sub | Sub Sub Cmd Data 0x38
Cmd | Cmd

Len | Code
6 0x06

BudID |SIVAdd | CmdLen

0x01 OxAO 1
(12C1) |(Ox50
<<1)

Flag |DatLen Result

0x00 (8 8

(Result==DatlLen
means success)

24 IBD185 User Guide

Read 8 bytes from address Ox00 on 24C02
REQUEST PACKET:

Header| Size |Command

OXFF, 8 Ox8E
OXEE
Data CRC
0xDO,
Sub | Sub Sub Cmd Data Ox5E
Cmd | Cmd
Len | Code
6 0x05
BudID |SIVAdd | CmdLen | CmdCode
0x01 |OxAO 1 0x00
(12C1) |(Ox50 (reading
<<1) from 0x00)

Flag |DatLen
0 8

REPLY PACKET:
Header| Size |Command

OXxFF, 16 Ox8E
OXEE
Data CRC
0xD9,
Sub | Sub Sub Cmd Data 0xDO
Cmd| Cmd
Len | Code
14 | Ox05

BudlID |SIVAdd | CmdLen

0x01 |OXAO |1
(12C1) |(0x50

<<1)
Flag |DatLen Result DatBuff
0] 8 8 0x00,0x01,
(Result== |0x02,0x03,
DatLen 0x04,0x05,
means 0x06,0x07
success)

IBD185 User Guide 25

	Table of Contents
	MCU provides the following functionality:
	1.1.1 GPIO configuration
	Software can configure the functionality of GPIO pins on MCU.
	MCU provides commands to configure the pin function as digital input or digital output.
	1.1.2 GPIO status
	Software can control the output pin and get the status of input pin on MCU.
	MCU provides commands to control the output of pin which is configured as an output pin or to read back the status of pin which is configured as input pin.
	1.1.3 I2C Bus interface
	Software can perform I2C bus operation on MCU.
	MCU provides command interface to control the I2C bus master on it.
	1.2.1 Signal transmission format
	Bandwidth
	Baud rate: 115200 bps.
	Data Format
	Parity: No Parity
	1 start bit
	8 data bits
	1 stop bit
	1.2.2 Packet Format
	Header
	bytes indicate start of the packet.
	1.2.3 CRC
	Protocol uses 16-bit CCITT CRC to verify data integrity.
	P(x) = X16+X12+X5+1.
	unsigned calc_crc(unsigned char *data, unsigned n, unsigned start)
	{
	unsigned I, k, q, c, crcval;
	crcval=start;
	for (I=0; I<n; I++)
	{
	c=data(I) & 0xFF;
	q=(crcval^c) & 0x0F;
	crcval=(crcval>>4)^(q*0x1081);
	q=(crcval^(c>>4)) & 0x0F;
	crcval=(crcval>>4)^(q*0x1081);
	}
	return crcval;
	}
	1.2.4 Communications flow
	Communication between PC and MCU utilizes Master-Slave model, where PC is a master, and MCU is a slave.
	Master sends requests to the slave, and slave has to reply to
	them. Slave acts like a passive device and cannot send any requests to the master.
	Description
	Value
	Code
	Get MCU Firmware Version
	0x80
	GET_FIRMWARE_VERSION
	Get GPIO configuration
	0x8A
	GET_GPIO_CONFIG
	Set GPIO configuration
	0x8B
	SET_GPIO_CONFIG
	Get GPIO Status
	0x8C
	GET_GPIO_STATUS
	Set GPIO Status
	0x8D
	SET_GPIO_STATUS
	I2C Bus Interface Command
	0x8E
	I2C_API_COMMAND

