nanoSSD 3ME3 Series

Customer:	
Customer	
Part	
Number:	
Innodisk	
Part	
Number:	
Innodisk	
Model Name:	
Date:	

Innodisk	Customer	
Approver	Approver	

Total Solution For Industrial Flash Storage

Table of contents

LIST OF FIGURES
1. PRODUCT OVERVIEW
1.1 INTRODUCTION OF INNODISK NANOSSD 3ME36
1.2 Product View and Models
1.3 SATA INTERFACE
1.4 JEDEC MO-276 Form Factor
2. PRODUCT SPECIFICATIONS
2.1 CAPACITY AND DEVICE PARAMETERS
2.2 Performance
2.3 ELECTRICAL SPECIFICATIONS
2.3.1 Power Requirement 7
2.3.2 Power Consumption 7
2.4 ENVIRONMENTAL SPECIFICATIONS
2.4.1 Temperature Ranges 8
2.4.2 Humidity
2.4.3 Shock and Vibration 8
2.4.4 Mean Time between Failures (MTBF) 8
2.5 ROHS COMPLIANCE
2.6 RELIABILITY
2.7 Transfer Mode
2.8 BALL AND SIGNAL DESCRIPTION
2.9 MECHANICAL DIMENSIONS
2.10 Assembly Weight 17
2.11 SEEK TIME
2.12 NAND FLASH MEMORY17
3. THEORY OF OPERATION 18
3.1 OVERVIEW
3.2 SATA III CONTROLLER 18
3.3 Error Detection and Correction19
3.4 WEAR-LEVELING
3.5 BAD BLOCKS MANAGEMENT 19
3.6 Power Cycling
3.7 GARBAGE COLLECTION 19
3.8 TRIM
4. INSTALLATION REQUIREMENTS 20
5. PART NUMBER RULE 21

Revision	Description	Date
Preliminary	First Released	Aug, 2013
Rev. 0.1	Modify pin assignment	Sep., 2013
	Modify block diagram	
	Add performance	
Rev. 1.0	1. Update 3ME3 SPEC	Mar., 2019
	2. Update RoHS/REACH/MSL	
	3. Update Ball and Signal Description	
Rev. 1.1	1. Update power supply requirement and power	Sep., 2021
	consumption	
	2. Remove appendix	

REVISION HISTORY

List of Tables

TABLE 1: DEVICE PARAMETERS	.7
TABLE 2: PERFORMANCE	.7
TABLE 3: INNODISK NANOSSD 3ME3 POWER REQUIREMENT	.7
TABLE 4: Power Consumption	.7
TABLE 5: TEMPERATURE RANGE FOR NANOSSD 3ME3	.8
TABLE 6: SHOCK/VIBRATION TESTING FOR NANOSSD 3ME3	.8
TABLE 7: NANOSSD 3ME3 MTBF	.8
TABLE 8: INNODISK NANOSSD 3ME3 PIN ASSIGNMENT.	.9

List of Figures

FIGURE 1: INNODISK NANOSSD 3ME3	6
FIGURE 2: INNODISK NANOSSD 3ME3 BLOCK DIAGRAM	. 18

1. Product Overview

1.1 Introduction of Innodisk nanoSSD 3ME3

Innodisk nanoSSD is an integrated SATA storage device, it combines Innodisk ID108 NAND flash controller and latest NAND flash in a JEDEC MO-276(μ SSD) form factor with ball grid array (BGA) package.

The nanoSSD supports SATA III 6Gbps within a tiny dimension, as well as low power consumption and high reliability. It offers an ideal solution for embedded, automotive, medical, gaming and most industrial applications.

1.2 Product View and Models

Innodisk nanoSSD 3ME is available in follow capacities:

nanoSSD 3ME3 64GB

nanoSSD 3ME3 16GB nanoSSD 3ME3 32GB

Figure 1: Innodisk nanoSSD 3ME3

1.3 SATA Interface

Innodisk nanoSSD 3ME3 supports SATA III interface, and compliant with Serial ATA Gen 1, Gen 2 and Gen 3 specification (Gen 3 supports 1.5Gbps /3.0Gbps/6.0Gbps data rate).

1.4 JEDEC MO-276 Form Factor

The Innodisk nanoSSD 3ME is offered in JEDEC MO-276F form factor with a 16mm x 20mm 156 ball TFBGA package for capacities 16GB to 128GB. The MO-276F is one of micro SSD standard from factor from JEDEC, and is available at

http://www.jedec.org/standards-documents/docs/mo-276f. The small form factor enables further miniaturization of embedded system designs as well as for a whole range of other applications that have mechanical restriction.

2. Product Specifications

2.1 Capacity and Device Parameters

nanoSSD 3ME3 device parameters are shown in Table 1.

Capacity	Cylinders	Heads	Sectors	LBA	User Space (MB)
16GB	16383	16	63	31277232	15272
32GB	16383	16	63	62533296	30533
64GB	16383	16	63	125045424	61057
128GB	16383	16	63	250069680	122104

Table 1: Device parameters

2.2 Performance

Burst Transfer Rate: 6.0Gbps

Table 2: Performance

Capacity	16GB	32GB	64GB	128GB	
Sequential	100 MB/sec	200 MB/sec	370 MB/sec	410 MB/sec	
Read (max.)	100 MD/Sec	200 MD/Sec			
Sequential	20 MP/coc	40 MP/coc	90 MP/coc	140 MP/coc	
Write (max.)	20 MB/sec	40 MB/sec	80 MB/sec	140 MB/sec	

Note: Base on CrystalDiskMark 3.01 with file size 1000MB

2.3 Electrical Specifications

2.3.1 Power Requirement

Table 3: Innodisk nanoSSD 3ME3 Power Requirement

Input Voltage	Item	Symbol	Rating	Unit
input voltage	Main power supply		3.3V± 5%	
	Flash IO supply	VIN	1.8V ± 5%	V
	Controller core supply		1.2V ± 5%	

2.3.2 Power Consumption

Table 4: Power Consumption

Mode	Power Consumption (W)
Read	1.5
Write	1.6
Idle	0.7

* Target: nanoSSD 3ME3 128GB

2.4 Environmental Specifications

2.4.1 Temperature Ranges

Table 5: Temperature range for nanoSSD 3ME3

Temperature	Range	
Operating	Standard Grade: 0°C to +70°C	
	Industrial Grade: -40°C to +85°C	
Storage	-55°C to +95°C	

2.4.2 Humidity

Relative Humidity: 10-95%, non-condensing

2.4.3 Shock and Vibration

Reliability Test Conditions		Reference Standards		
Vibration	7 Hz to 2K Hz, 20G, 3 axes	IEC 68-2-6		
Mechanical Shock	Duration: 0.5ms, 1500 G, 3 axes	IEC 68-2-27		

Table 6: Shock/Vibration Testing for nanoSSD 3ME3

2.4.4 Mean Time between Failures (MTBF)

Table 7 summarizes the MTBF prediction results for various nanoSSD 3ME3 configurations. The analysis was performed using a RAM Commander[™] failure rate prediction.

- **Failure Rate**: The total number of failures within an item population, divided by the total number of life units expended by that population, during a particular measurement interval under stated condition.
- **Mean Time between Failures (MTBF)**: A basic measure of reliability for repairable items: The mean number of life units during which all parts of the item perform within their specified limits, during a particular measurement interval under stated conditions.

Table 7: nanoSSD 3ME3 MTBF

Product	Condition	MTBF (Hours)
Innodisk nanoSSD 3ME3	Telcordia SR-332 GB, 25°C	>3,000,000

2.5 RoHS Compliance

nanoSSD 3ME3 is fully compliant with RoHS directive.

2.6 Reliability

Parameter	Value
Read Cycles	Unlimited Read Cycles
Wear-Leveling Algorithm	Support
Bad Blocks Management	Support
Error Correct Code	Support
Flash endurance	3000 P/E cycles
TBW(Sequential Write)	
16GB	4.7
32GB	9.4
64GB	18.8
128GB	37.5

2.7 Transfer Mode

nanoSSD 3ME3 support following transfer mode: Serial ATA III 6.0Gbps Serial ATA II 3.0Gbps Serial ATA I 1.5Gbps

2.8 Ball and Signal Description

The following table provides the pin definition of nanoSSD balls.

TYPE: Input - nanoSSD receives signal from host.

TYPE: Output - nanoSSD drives/transmits signal to host device.

TYPE: IO - Signal is bi-directional.

SATA interface signals											
Ball #	Ball name	Ball name Type									
P7	SATA_RXP	Input	SATA Receive Signal Differential Pair								
R7	SATA_RXN	Input	SATA Receive Signal Differential Pair								
U7	SATA_TXN	Output	SATA Transmit Signal Differential Pair								
V7	SATA_TXP	Output	SATA Transmit Signal Differential Pair								
R11	A1V2	Supply	SATA PHY VDDC								

Table 8: Innodisk nanoSSD 3ME3 Pin Assignment

T11	A1V2	Supply	SATA PHY VDDC
P8	A1V2	Supply	SATA PHY VDDC
R8	A1V2	Supply	SATA PHY VDDC
Τ7	AGND	GND	SATA_VSS
N7	AGND	GND	SATA_VSS
W7	AGND	GND	SATA_VSS
	•	Debug sig	nals
Ball #	Ball name	Туре	Description
L16	GPIO 3	Output	RS232 TXD (UART)
L17	GPIO 2	Input	RS232 RXD (UART)
	•	Power supply	signals
Ball #	Ball name	Туре	Description
L12	D3V3	Supply	3.3V Power Supply
M11	D3V3	Supply	3.3V Power Supply
R13	D3V3	Supply	3.3V Power Supply
R14	D3V3	Supply	3.3V Power Supply
R15	D3V3	Supply	3.3V Power Supply
R16	D3V3	Supply	3.3V Power Supply
R19	D3V3	Supply	3.3V Power Supply
R20	D3V3	Supply	3.3V Power Supply
T16	D3V3	Supply	3.3V Power Supply
U8	A3V3	Supply	Analog 3.3V
U16	D3V3	Supply	3.3V Power Supply
V8	A3V3	Supply	Analog 3.3V
V11	VCC_IO	Supply	3.3 GPIO Supply
V16	VCCQ	Supply	1.8V VCCQ

innodisk nanoSSD 3ME3 W16 VCCQ Supply 1.8V VCCQ Y16 VCCQ Supply 1.8V VCCQ Y19 VCC_IO Supply 3.3 GPIO Supply Y20 D3V3 Supply 3.3V Power Supply AA19 VCC_IO Supply 3.3 GPIO Supply AC8 VCC_IO Supply 3.3 GPIO Supply W11 D1V2 Supply 1.2V Power Supply Y7 D1V2 Supply 1.2V Power Supply Y8 D1V2 Supply 1.2V Power Supply Y11 D1V2 1.2V Power Supply Supply Y12 D1V2 1.2V Power Supply Supply Y13 D1V2 Supply 1.2V Power Supply AA7 D1V2 Supply 1.2V Power Supply Ground (GND) signals Ball # Ball name Description Туре L7 VSS GND Ground L8 VSS GND Ground L11 VSS GND Ground L19 VSS GND Ground L20 VSS GND Ground Μ7 VSS GND Ground M19 VSS GND Ground M20 VSS GND Ground VSS GND Ground N8 N19 VSS GND Ground P19 VSS GND Ground

			Hanosob STIES
P20	VSS	GND	Ground
R12	VSS	GND	Ground
Τ8	VSS	GND	Ground
U11	VSS	GND	Ground
U19	VSS	GND	Ground
U20	VSS	GND	Ground
V19	VSS	GND	Ground
Y14	VSS	GND	Ground
Y15	VSS	GND	Ground
AB7	VSS	GND	Ground
AC7	VSS	GND	Ground
AC20	VSS	GND	Ground
AD7	VSS	GND	Ground
AD8	VSS	GND	Ground
AD19	VSS	GND	Ground
AD20	VSS	GND	Ground
		Analog sig	inals
L9	XTALOUT	Output	25MHz Crystal out
M10	XTALIN	Input	25MHz Crystal in
		Do not use (DN	U) signals
Ball #	Ball name	Туре	Description
M8	TMEN	DNU	Do not use
M16	NC	DNU	Do not use
AC13	NC	DNU	Do not use
AC10	NC	DNU	Do not use
AA8	NC	DNU	Do not use

AD9	NC	DNU	Do not use
AD11	NC	DNU	Do not use
AD13	NC	DNU	Do not use
L14	NC	DNU	Do not use
M12	NC	DNU	Do not use
M14	NC	DNU	Do not use
M15	NC	DNU	Do not use
M17	NC	DNU	Do not use
M18	NC	DNU	Do not use
N20	NC	DNU	Do not use
T19	NC	DNU	Do not use
T20	NC	DNU	Do not use
V20	NC	DNU	Do not use
W8	NC	DNU	Do not use
W19	NC	DNU	Do not use
W20	NC	DNU	Do not use
AB8	NC	DNU	Do not use
AB19	NC	DNU	Do not use
AB20	NC	DNU	Do not use
AC12	NC	DNU	Do not use
AC15	NC	DNU	Do not use
AC17	NC	DNU	Do not use
AC18	NC	DNU	Do not use
AC19	NC	DNU	Do not use
AD14	NC	DNU	Do not use
L10	NC	DNU	Do not use

Г

	Reserved signals										
Ball #	Ball name	Туре	Description								
L15	GPIO 0	Output	SDA								
AD10	GPIO 1	Output	SCL								
AD16	GPIO 4	Input	Reserved								
L18	GPIO 5	In &Out	Load mode								
AD18	GPIO 6	Output	Reserved								
AC14	GPIO 7	Input	Reserved								
AC11	GPIO 8	Output	Reserved								
AD17	GPIO 9	Output	Reserved								
AC16	GPIO 10	Output	Reserved								
AD15	GPIO 11	Output	Reserved								
AC9	GPIO 12	Input	Reserved								
AA20	GPIO 13	Output	PHY LED								
M13	GPIO 14	Output	DAS								
AD12	GPIO 15	Input	Write Protect								
L13	GPIO 16	Output	Reserved								
М9	RESET	Input	SSD Reset								
		Mechanical gro	und balls								
Ball #	Ball name	Туре	Description								
A1	ME. GND	GND	Ground								
A3	ME. GND	GND	Ground								
A5	ME. GND	GND	Ground								
A22	ME. GND	GND	Ground								
A24	ME. GND	GND	Ground								
A26	ME. GND	GND	Ground								

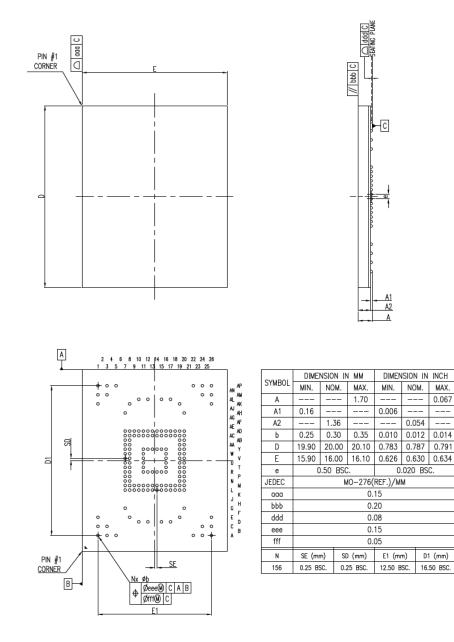
C1	ME. GND	GND	Ground
СЗ	ME. GND	GND	Ground
C24	ME. GND	GND	Ground
C26	ME. GND	GND	Ground
D10	ME. GND	GND	Ground
D12	ME. GND	GND	Ground
D15	ME. GND	GND	Ground
D17	ME. GND	GND	Ground
E1	ME. GND	GND	Ground
E8	ME. GND	GND	Ground
E19	ME. GND	GND	Ground
E26	ME. GND	GND	Ground
G7	ME. GND	GND	Ground
G20	ME. GND	GND	Ground
AH7	ME. GND	GND	Ground
AH20	ME. GND	GND	Ground
AK1	ME. GND	GND	Ground
AK8	ME. GND	GND	Ground
AK19	ME. GND	GND	Ground
AK26	ME. GND	GND	Ground
AL10	ME. GND	GND	Ground
AL12	ME. GND	GND	Ground
AL15	ME. GND	GND	Ground
AL17	ME. GND	GND	Ground
AM1	ME. GND	GND	Ground
AM3	ME. GND	GND	Ground

innodisk	í i		nanoSSD 3ME3
AM24	ME. GND	GND	Ground
AM26	ME. GND	GND	Ground
AP1	ME. GND	GND	Ground
AP3	ME. GND	GND	Ground
AP5	ME. GND	GND	Ground
AP22	ME. GND	GND	Ground
AP24	ME. GND	GND	Ground
AP26	ME. GND	GND	Ground

NOM. MAX.

0.054

0.020 BSC


0.012 0.014

D1 (mm)

0.067

2.9 Mechanical Dimensions

2.10 Assembly Weight

1.3g (32GB)

2.11 Seek Time

Innodisk nanoSSD 3ME3 is not a magnetic rotating design. There is no seek or rotational latency required.

2.12 NAND Flash Memory

Innodisk nanoSSD 3ME3 uses Multi Level Cell (MLC) NAND flash memory, which is non-volatility, high reliability and high speed memory storage.

3. Theory of Operation

3.1 Overview

Figure 2 shows the operation of Innodisk nanoSSD 3ME3 from the system level, including the major hardware blocks.

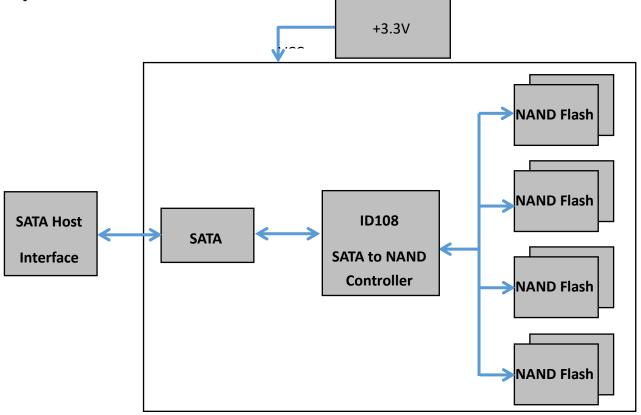


Figure 2: Innodisk nanoSSD 3ME3 Block Diagram

Innodisk nanoSSD 3ME3 integrates a SATA III controller and NAND flash memories. Communication with the host occurs through the host interface, using the standard ATA protocol. Communication with the flash device(s) occurs through the flash interface.

3.2 SATA III Controller

Innodisk nanoSSD 3ME3 is designed with ID108, a SATA III 6.0Gbps (Gen. 3) controller. The Serial ATA physical, link and transport layers are compliant with Serial ATA Gen 1, Gen 2 and Gen 3 specification (Gen 3 supports 1.5Gbps/3.0Gbps/6.0Gbps data rate). The controller has 4 channels for flash interface.

3.3 Error Detection and Correction

Highly sophisticated Error Correction Code algorithms are implemented. The ECC unit consists of the Parity Unit (parity-byte generation) and the Syndrome Unit (syndrome-byte computation). This unit implements an algorithm that can correct 40 bits per 1024 bytes in an ECC block. Code-byte generation during write operations, as well as error detection during read operation, is implemented on the fly without any speed penalties.

3.4 Wear-Leveling

Flash memory can be erased within a limited number of times. This number is called the **erase cycle limit** or **write endurance limit** and is defined by the flash array vendor. The erase cycle limit applies to each individual erase block in the flash device.

Innodisk nanoSSD 3ME3 uses a static wear-leveling algorithm to ensure that consecutive writes of a specific sector are not written physically to the same page/block in the flash. This spreads flash media usage evenly across all pages, thereby extending flash lifetime.

3.5 Bad Blocks Management

Bad Blocks are blocks that contain one or more invalid bits whose reliability are not guaranteed. The Bad Blocks may be presented while the SSD is shipped, or may develop during the life time of the SSD. When the Bad Blocks is detected, it will be flagged, and not be used anymore. The SSD implement Bad Blocks management, Bad Blocks replacement, Error Correct Code to avoid data error occurred. The functions will be enabled automatically to transfer data from Bad Blocks to spare blocks, and correct error bit.

3.6 Power Cycling

Innodisk's power cycling management is a comprehensive data protection mechanism that functions before and after a sudden power outage to SSD. Low-power detection terminates data writing before an abnormal power-off, while table-remapping after power-on deletes corrupt data and maintains data integrity. Innodisk's power cycling provides effective power cycling management, preventing data stored in flash from degrading with use.

3.7 Garbage Collection

Garbage collection technology is used to maintain data consistency and perform continual data cleansing on SSDs. It runs as a background process, freeing up valuable controller resources while sorting good data into available blocks, and deleting bad blocks. It also significantly reduces write operations to the drive, thereby increasing the SSD's speed and lifespan.

3.8 TRIM

The TRIM command is designed to enable the operating system to notify the SSD which pages no longer contain valid data due to erases either by the user or operating system itself. During a delete operation, the OS will mark the sectors as free for new data and send a TRIM command to the SSD to mark them as not containing valid data. After that the SSD knows not to preserve the contents of the block when writing a page, resulting in less write amplification with fewer writes to the flash, higher write speed, and increased drive life.

4. Installation Requirements

Please refer to Innodisk_nanoSSD_Design_Manual_Rev.1.1

5. Part Number Rule

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
CODE	D	Е	N	S	D	-	3	2	G	D	0	8	В	w	Α	D	С	-	X	X
Description	Disk	n	iano 3M	SSE	5		Ca	pacit	ty	С	atego	ry	Flash Mode	Operation Temp.	Internal Control	CH.	Flash	-	Customized Code	
Defi							init	ion												
Code 1 st (Disk)									Code 13 th (Flash mode)											
D : Disk												B:	Toshi	ba 15nm	MLC					
			С	ode	e 2	nd							Co	de 14 th	(Operati	on T	empe	rat	ure)	
E: Embedde	ed											C:	Stan	dard Grad	de (0°C ~	+70)°C)			
												W	W: Industrial(-40°C~85°C)							
Co	de 3	3 rd	~ !	5 th	(F	orr	n Fa	act	or)				Code 15 th (Internal control)							
NSD:nanoS	SD											A:	A: Product Version							
													Code 16 th (Channel of data transfer)							
	Cod	e 7	th r	~9¹	th (Ca	рас	ity)			S:	S: Single Channel							
16G: 16GB												D: Dual Channels								
32G: 32GB												Q:	Q: Quad Channels							
64G: 64GB												Code 17 th (Flash Type)								
A28: 128GE	A28: 128GB							C: MLC												
	Cod	e 1	0 th	~	12'	th (Ser	ies)											
D08: nanoS	SD 3	3ME	=3									Code 19 th ~20 th (Customized Code)								